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Abstract. The methods of nonparametric statistics are very useful in data analysis. One of the 

most popular methods is called Parzen-Rosenblatt approximation. This method turns out to be 

effective, for example, in a problem of estimation of longevity of pipelines or in the analysis of 

the statistical characteristics of traffic flows. This paper discusses the recommendations for 

application of a method, which was performed by Parzen and Rosenblatt, in a problem of 

recovering a probability density function from a sample of random data with a bounded 

scattering region. It was shown that there are some difficulties during calculation of 

information functional. This paper gives an explanation of causes which lead to a 

nonmonotonicity of an information functional and which are based on a finite precision of 

computer calculations. It was proved a choice of initial value of smoothing parameter for 

different kernel types and was proposed an algorithm for finding a maximal value of 

information functional. 

1.  Preface 

The main problem of mathematical statistics is recovering the distribution function from a sample of 

random data obtained as a result of some experiments [1]. This problem is of great practical 

importance, for example, when solving the problems of strength reliability of elements and objects of 

oil and gas equipment [2]. The problem has the following statement: using experimental sample values 

of a random variable , 1,iX i N  from general population to find out distribution function 

   PrF y X y   which is connected with probability density function ( )f y  by the following 

integral statement: 

( ) ( ) ,

y

F y f d


    (1) 

There are two main approaches to solve this problem: parametric and nonparametric. 

The parametric approach implies the possession of the information about type of distribution 

function depending on a certain parameters set. Based on this information and given sample of data it 

is possible to estimate parameters values which ensure maximal similarity of theoretical distribution 

function  F y  and empirical distribution function 
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   
1

1
,

N

N i

i

F y y x
N 

    (2) 

Where Heaviside function 

 
1, if 0,

0, if 0,

i

i

i

y x
y x

y x

 
   

 
 (3) 

in accordance with the chosen measure of proximity, depending, generally speaking, on 

distribution type [3]. 

The existence of solution of this problem is ensured by central theorem of mathematical statistics 

    Pr lim sup 0 1.N
N

F y F y


    (4) 

The functions represented in table 1 are used as kernel functions. 

Table 1. Kernel functions. 

Kernel Formula 

Normal 

2

2
1

( )
2

t

k t e





 

Laplace 
1

( )
2

t
k t e


  

Fisher 

sin
1 2

( ) ,
2 2

2

t

t
k t

t




  
  
   

 
 
   

Cauchy 
2

1 1
( )

1
k t

t

 
  

   

Logistic 
 

2
( )

1

t

t

e
k t

e







 

Epanechnikov 

2

3 1
5

( ) , 5
4 5

t

k t t

 
  
  

 

Uniform 
1

( ) , 1
2

k t t 
 

Triangle ( ) 1 , 1k t t t  
 

Square 
 23 1

( ) , 1
4

t
k t t

 
 

 

The nonparametric statistics are based on an approach that makes it possible to obtain adaptive 

estimates of empirical distributions in the form of some functionals independent of the form of the 

unknown a priori distribution [4]. To recovering the unknown distribution function in nonparametric 

statistics, a number of methods and algorithms are known [4]: histogram method, nearest neighbor 

method, Rosenblatt-Parzen method, decomposition for basis functions and others. For example, it was 

shown in [2] that the Rosenblatt-Parzen approximation proves to be very effective in the problem of 
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estimating the longevity of oil and gas pipelines based on an analysis of the accumulated statistical 

information. 

Following [4], the discussed method of recovering the probability density function of the 

experimental sample is based on the assumption that the probability density function is estimated 

locally at each point ix  using elements of the training sample from some neighborhood of ix . The 

total distribution function is the sum of local functions.  

 
1

1
,

N
i

i

y x
F y K

N h

 
  

 
  (5) 

where ( )K t  is a kernel function that meets the following conditions: 

a) ( )K t  - monotonically non-decreasing function, ( ) [0,1]t K t   

b) 𝐾(𝑡) = 1 − 𝐾(−𝑡)  

c) 0Nh   if ;N   

h  smoothing parameter that determines the smoothness of the resulting estimates 

Accordingly, the probability density function is calculated by the formula 

 
1

1
,

N
i

i

y x
f y k

N h h

 
  

  
  (6) 

where    .
d

k y K y
dy

  

These estimates were proposed by Rosenblatt [5] and explored by Parzen [6]. 

In this method the quality of the approximation depends on the type of kernel function and on the 

value of the smoothing parameter h  [4] (figure 1). 

 

Figure 1. Probability density function of a random sequence , 1,100ix i   

generated in accordance with the normal distribution law  1,4N :1 – histogram of 

random sequence; 2 – normal kernel 
*

opth h ; 3 – normal kernel 
*

opth h ; 4 – 

normal kernel 
*

opth h . 

The optimal values of the kernel function and smoothing parameter are found from the condition 

that the functional reaches its maximum value  

ln ( ) ( )J k t f t dt   
(7) 

In [2] it is recommended to find the optimal value 
*

opth  for each of the kernel functions presented in 

table 1 and choose kernel with the most function value 
*( )opth  
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1
*

1

1 1
arg max ln ,

1

N N
i j

m m

i j im m

x x
h k

N N h h



 

    
    

      
 

 

(8) 

 
 

1

1

1 1
ln

1

N N
i j

m m

i j im m

x x
h k

N N h h



 

  
    

    
   (9) 

It can be seen from (6) that searching the optimal value of the smoothing parameter for each of the 

basis functions is equal to searching the solution of a complex nonlinear equation 

 

 

1

1

1
ln 0,

1

N N
i j

m

i j i

x xh
k

h h N h h



 

   
   

      
   (10) 

which can only be found numerically. 

The accuracy of finding the solution of this equation directly depends on the successful choice of 

the initial approximation, for which there are no general rules. In [2] it is proposed to search the 

maximum of a functional  mh  on the basis of an analysis of the values of the function calculated on 

the interval 
min max,m mh h   . It turns out [2, p. 45] that the function  mh  for small values of 

mh  in a 

number of cases turns out to be non-smooth, which makes it difficult to find its maximum. At the same 

time, there is no explanation for the detected peculiarity of the function. 

This paper discusses the reasons for the nonmonotonicity of the function  mh  and the choice of 

the search interval for the extremum of the function. 

2.  Analysis of the reasons for the nonmonotonicity of the function  mh  for kernels with an 

unlimited range of the function argument 

Consider the results of calculating in the MATLAB the values  mh  of a random sequence 

, 1,100ix i   generated in accordance with the normal distribution law  1,4N  for kernel No. 1 

(figure 2). 

It is clear from figure 2 that the function at points 3 3 1.1643 10 ;1.1645 10 ,h        

3 3 2.6196 10 ;2.6230 10h        has discontinuities of the first kind and of the second kind. For other 

values of the smoothing parameter the function is continuous. Analysis of the values of the function 

for the values of the smoothing parameter located in this ranges has showed that at the points of 

discontinuities of the second kind, the values of the function are equal to . It is clear from (6) that 

the necessary condition for the occurrence of the situation is that the argument of the logarithm in (6) 

is equal to zero: 

 

1

1

1
0.

1

N
i j

j i

x x
k

N h h





 
 

   
                                            (11) 

This result is possible when the condition 
1 0

i jx x
k

h

 
 

 

 is true simultaneously for all possible 

combinations 1,100, 1,100,i j i j   . In numerical calculations it is sufficient to perform it so that all 

the calculated values of the function 
1

i jx x
k

h

 
 
 

 are less than the machine zero 10
323

. It is possible to 

avoid the fulfillment of this condition and to eliminate discontinuities of the second kind, using the 

following formula for calculating the values of the function: 
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ln 1 ln ln ,
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x x
h N h k

h
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 

   
        

  
 

 
(12) 

 

Figure 2. Function  mh , kernel No. 1, random , 1,100ix i   generated in 

accordance with the normal distribution law  1,4N . 

This formula is equivalent to (6). The calculation results of the function  mh  in accordance with 

(8) are shown in figure 3, from which it can be seen that with this method of calculation it is possible 

to eliminate discontinuities of the second kind. 

 

Figure 3. Function  mh , calculated in accordance with (8) kernel No. 1, random 

, 1,100ix i   generated in accordance with the normal distribution law  1,4N . 

Moreover it is possible to obtain an estimate of the minimum possible value of the smoothing 

parameter for kernel No. 1.  

   
2 2

2

2 323

2
exp 10 10

2

i jx x hi jx x

h

  

 
   
 
 

                                (13) 

Where do we find 

  
1 2

2

1min

min 2

323

i jx x
h

 
 

  
 
 

                                      (14) 

Repeating similar arguments we find for kernels No. 2, 4, 5, respectively 
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 
2min

min
,

323 lg 2

i jx x
h





                                                            (15) 

 
2

4min 323

min

10 1

i jx x
h





                                                            (16) 

The minimum possible value of a variable 
5minh  can be found numerically as a solution to the 

inequality 

    min
min

lg 1 323.
i j i jx x h

x x
e

h

 


                                           (17) 

Note the algorithm for searching the maximum value of  mh  can be changed. To do this, note 

that for   
1 2

2

1 max 2i jh x x   for a normal kernel, for  2,4,5 max i jh x x   for the Laplace, Cauchy, 

and logistic kernel, the values of the arguments of the kernel functions belong to the interval  1,1
 

and the values of the kernel functions belong to the intervals 11 1
, ,

2 2
e 

 
  

 11 1
, ,

2 2
e 

 
 

 1 1
,

2

 
 
  

, 

 

1

2
1

1
,
41

e

e





 
 
 
 

 respectively. Thus, for the indicated values of the smoothing parameter, there are no 

computational problems associated with the precision of numbers in the computer. Therefore, it is 

possible with some finite step to start calculations for a particular kernel from the corresponding value 

1,2,4,5h  and then move towards smaller values of the variable h  until the maximum value of the 

function  mh . The viability of using this algorithm in practice is confirmed by the plot presented in 

figure 4 

 

Figure 4. Function  mh , kernels No. 1,2,4,5, calculated with the proposed 

algorithm. 

3.  Properties of the function  mh  for kernels with a limited range of argument 

Kernels No. 3, 6-9 have bounded scattering regions: ,
2

t
   5,t   1,t   for that reason 
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1

max
,

2

i jx x
h





 

 
2

max
,

5

i jx x
h


  6,7,8,9 max .i jh x x   (18) 

The results of calculating the values of the function  mh  for a random sequence , 1,100ix i   

generated in accordance with the normal distribution law, for kernels No. 3, 6-9 are shown in figure 5 

 

Figure 5. Function  mh , kernels No. 3,6-9, calculated with the 

proposed algorithm. 

It is clear From figure 5 that for each of the used kernels the function  mh  turns out to be 

monotonically decreasing, therefore, to estimate the optimal value of the smoothing parameter it is 

sufficient to calculate the value of the function at points calculated in accordance with (9). 

4.  Conclusions 

The results of the study allowed: 

1. Explain the cause, which leads to a nonmonotonicity of the function  mh  due to the finite 

precision of computer arithmetic. 

2. For kernel functions with an unbounded range of values justify the choice of the initial value and 

propose an algorithm for finding the maximum value of the function  mh . 

3. For kernel functions with bounded range of values justify the choice of the optimal value of the 

parameter h , which ensures the condition (6). 
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