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Abstract. In this paper the application of the Data Assimilation method based on Ensemble 

Kalman Filter to forecasting the Lorenz attractor dynamic characteristics is described. In the 

article the EnKF algorithm is described as applied to forecasting of the Lorenz attractor 

coordinates. The assessment of influence of the filter parameters on the quality of correction of 

the forecast is carried out. The importance of using before obtained forecast results in the filter 

window is noted. Primary principles of correction of forecast of dynamic characteristics in 

nonlinear systems based on EnKF are formulated. The obtained results allow the conclusion 

about the necessity of applying the Data Assimilation method to carrying out forecasts of 

various dynamic characteristics in nonlinear systems using the EnKF as a tool to be drawn. 

1. Introduction 

A task of forecasting of values of one-dimensional time series (TS), by which a series of index values 

wk (k = 1…P) of observed system sorted in time order is meant, is topical. The task arises in different 

areas of people activity: economics, technology, science.  

The task of forecasting is to calculate member m+1 of TS basing on m preceding values. While 

solving the task by means of methods not using mathematical system models (formal forecasting 

methods) that generated the forecasted TS, it is assumed that: 

 ),,...,,,...,,( 121 mptttt aawwwFw   (1) 

where F represents a function defined by selected forecast method, tw  is a vector of forecasted 

values,  
1 2, ,...,t t t pw w w  

 are preceding values of the TS, maa ,...,1  represent model parameters. For 

example, when using the ARMA method (Autoregressive moving-average model) the vector of 

forecasting values is presented as follows: 
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where c – is a constant value,   represents white noise, ii  ,  – are real numbers – the 

autoregressive and the moving average coefficients, qp,  – are integers defining the model order. [1] 
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However, the experience of application of formal forecasting methods shows that the achievable 

accuracy of the forecast is not high enough. It is indirectly affirmed by the large amount of methods. 

[2] 

An alternative TS forecasting method is Data Assimilation method. It uses mathematical model of 

a system that generated the forecasting TS. When using the Data Assimilation method, the TS forecast 

is carried out according to the following system of equations: [1] 
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where M – is a nonlinear operator of the state model, wf represents a vector of forecasted values, p 

is a vector of the model parameters, H – represents nonlinear operator of the TS observation.  

In the paper the DA method is applied to forecasting of the Lorenz attractor coordinates. The 

Lorenz attractor is a nonlinear dynamic system that reveals chaotic behavior.  

2. Formulation of the Data Assimilation method for the Lorenz Attractor 

The Lorenz attractor appears in the task of describing air convection dynamics, when the air is located 

over a heating surface. The Lorenz attractor mathematical model is described using a system of three 

nonlinear ordinary differential equations that represent the convection final amplitude: 
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where σ=ν/k is the Prandtl number, r = Ra/Raс is the Rayleigh number (normalized), b=4/(1+a2) is 

geometric factor, x is the convection intensity, y is the difference in temperature between the 

ascending and the descending flows; z is the vertical thermal profile deviation from the linear one. [2] 

An important feature of the system is that the system’s behavior becomes random, when the 

parameters σ, b and r reach values of σ=10, b = 8/3 and 06.24r . In figure 1 an example of the 

Lorenz attractor in its chaotic mode is presented. In phase space the attractor’s topology is represented 

by a tangle of trajectories, in which two areas can be distinguished. The solution is located inside one 

of the areas at each point in time. And a shift of the state of the system towards one area or another is 

absolutely unpredictable. [3] 

 

Figure 1. The Lorenz attractor. 
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3. Ensemble Kalman Filter 

Now we shall concretize the equations of the Data Assimilation method as applied to the Lorenz 

attractor. The Lorenz attractor state at the current point in time is characterized by the following set of 

coordinates: 
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 (5) 

When applying the Kalman Filter algorithm the estimation of the observed vector (forecasted 

parameter) X state is carried out at every time step. The filter operation is based on consecutive 

execution of three steps: analysis, forecasting, correction of the forecasting 

The Discrete form of the Lorenz 3 model can be written as: 
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 (6) 

where τ represents length of a time step used in the model integration. 

EnKF allows acquiring more precise descriptions of reality, which can be used in forecasting, due 

to making use of multiple representations of its parameters. The representations get more accurate as 

new information incomes. All of the realizations allow us to acquire statistics that describe 

relationships between the parameters of the models, their responses and the models accordance to the 

real data.  

Considering that the Lorenz system components depend on one another, the forecasting is carried 

out separately for the x, y, z components; since z component depends on both x and y it is forecasted 

the last using already forecasted values of x and y. 

As an example, let us take 100 realizations of a three-dimensional model. Each realization is 

calculated using the KF forecast resulting in 100 forecast variations. Having multiple model 

realizations and multiple forecasts allows us to calculate the covariance between the attractor’s 

parameters and the observed values. Using the covariance, the model parameters can be adjusted based 

on the difference between the model and the observation. The adjustments differ due to the individual 

distinctions between the models and the real values. Then the mean value is calculated. 

The EnKF algorithm application to forecasting the Lorenz attractor characteristics is described 

further. Here H represents an identity diagonal 3×3 matrix. The expected values of the model’s error 

and the error of forecast are taken equal to zero. The errors are input with accordance to the covariance 

matrices. 

3.1. THE EnKF ALGORITHM 

The algorithm input data: 

obsy  – is the observation vector; 

M  – is a nonlinear operator of the state model;  

H  – is a linear operator of the TS observation; 

R  – is a covariance matrix of the observation errors distribution; 

Q  – is a covariance matrix of the modeling errors distribution. 

For the Lorenz3 model operators of the observation and the forecast are taken in accordance with 

the following formulas:  
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 (7) 

The resulting value of the covariance matrices is approximation of the error covariance matrix. 

During calculations the mean of a vector of the ensemble real values is taken. During the realization of 

the Lorenz attractor model, it is assumed that the system components are distributed normally. 

Consequently, diagonal matrix of the standard deviation values represents the covariance observation 

error matrix. For the Lorenz3 model covariance matrices of errors of observation and forecast are 

calculated in accordance with the following formulas: 

 o

f

EQ

ER





 (8) 

where of  ,

 

– are the dispersions of errors of forecast and observation, E  – is identity diagonal 

3×3 matrix. [4, 5] 

The EnKF algorithm is realized by carrying out the following sequence of actions:  

1. Formation of N-sized ensemble of data using mathematical model at the starting time point. 

Every realization has its own set of properties. [4] 

 ( ), 1,2,...,m

aw F w m N   (9) 

where F – is a function describing the system, μ – is a vector of random modeling errors that is 

normally distributed and has a covariance matrix.  

2. Calculation of the forecast values for every model in the ensemble, getting values of the 

observed parameters at step n for the state vector obtained at the n-1 step. After that the fixed-point 

iteration method in the form of the following equations is used for the model: 

 ( ) ( ( )) , 1,2,...,m

fw t t M w t m N      (10) 

where   – is a vector of random modeling errors that is normally distributed and has a covariance 

matrix. 

3. The calculation of the covariance error matrix to correct the forecast: 

 Formation of a covariance error matrix for the forecast vector: 
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 Calculation of Kalman weight operator K [5] 

 ,)(* 1 RHPHHPK T
ff  (12) 

 Update of the ensemble model values in accordance with the weight operator and the 

observation vector obsy . The covariance forecast matrix values are updated in accordance 

with the corrected ensemble value: 

 m m m( ) ( ) ( ( ) ( ))i i obs i iw w K y H w         (13) 

 Update of the forecast error covariance matrix in accordance with a more precise ensemble

mw . Calculation of the value of analyzed components wa and of the analysis error covariance 

matrix. Here I – is an identity diagonal matrix. [5] 
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4. Steps 2 and 3 are executed consecutively for each n moment in time, when new measurements 

income. The set of measurements is not necessarily stays the same at each step, measurements may 

income constantly. 

4. Numerical experiments 

The Lorenz system of DE’s with σ=10, r = 28, b = 8/3 parameters was taken as a nonlinear model that 

becomes the Lorenz attractor and enters chaotic mode due to the selected values. Values of time 

parameter (t) given in seconds are the input of the system. For analyzing and forecasting initial time 

which is 10 seconds, because prior the attractor is in chaotic mode which makes forecasting harder and 

complicates statistical processing of results. As a result of modeling the x(t), y(t), z(t) attractor 

components are obtained from the output. White noise is additively summarized with the obtained TS 

values resulting in the observation components.  

TS with x, y, z parameters, adjusted based on the noise impact on the systems, is obtained as a 

result of the noise addition.  The result of filter’s work is three time-series containing x ,́ y ,́ z  ́

parameters values adjusted based on forecasting and following correction.  

4.1. EXPERIMENT – Evaluation of Ensemble Size in the EnKF 

The research is aimed at determining dependencies of the result of correction of forecasting on various 

filter parameters and the attractor’s (stable or unstable) state (result for 50 ensembles of filter in 

figure 2). Corrected forecast accuracy evaluation is carried out by calculating the means square error 

(MSE). The MSE computes mean values of squares of errors or deviations; it is a difference between 

the estimation and estimated value. MSE is a measure of quality of estimation, and it is always a non-

negative value, the values closest to zero are considered the best. For Lorenz 3 model need use 

ensemble filters, because this method uses several sets of conditions. 

 

Figure 2. The results of an experiment using the filter size of 50 ensembles and dispersions of the 

errors equal to 10 and 5 
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Further the results of the filter’s work on 150 ensembles with error dispersions of 10 and 5 

correspondingly are reviewed. The obtained results are presented in figure 3. Applying EnKF using 

given parameters is impractical. The MSE value roughly equals to 15 for both x and y coordinates. 

The MSE values obtained as results of previous experiments are equal to approximately 0, 2. 

 

Figure 3. The results of an experiment using the filter size of 150 ensembles and dispersions of the 

errors equal to 10 and 5 

The results of the experiments are compared, the dependency of the forecast accuracy on true 

values is determined. The estimation is carried out to determine the dependency of the forecast result 

accuracy on the EnKF characteristics.  

During the research the estimation of the Kalman Filter parameter’s impact has been carried out, 

namely, the dependency of the accuracy of the model characteristics forecast result on the number of 

points in ensemble is determined. The dependency of the MSE value on the filter ensemble size for 

three components is presented on the plot in the picture.  

The dependency is linear (figure 4) which proves the assumption that increase in number of the 

filter ensemble points leads to decrease in the forecast error.  
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Figure 4. The dependency of the forecast accuracy on the filter ensemble size. 

5. Conclusions 

During the research, EnKF has been applied to the Lorenz attractor in chaotic mode as a data 

assimilation method. The methodology has been tested with values of ensemble size ranging from 10 

to 205 points.  

The conclusion about 10 ensemble being the best option is made basing on the results, since 

increase in the ensemble size to 200 ensembles causes overfitting. The result is fair for small values of 

the added noise dispersion.  

The results show that the true and estimated values differ (especially strongly at the end of the 

integration period) due to the chaotic character of the system. When applying EnKF it is necessary to 

make observations more often in order to obtain accurate forecast. 

In some cases, the forecasting fails more than once in unequal periods of time. The most accurate 

observations of forecast are obtained in a period of time when the model is located in the most stable 

attractor’s area (i.e. the model is spinning around one of the leaves instead of moving from one to 

another). 
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