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6 Jacobi weights, fractional integration,

and sharp Ulyanov inequalities

Polina Glazyrina and Sergey Tikhonov

Abstract. We consider functions Lp-integrable with Jacobi weights on [−1, 1] and prove
Hardy–Littlewood type inequalities for fractional integrals. As applications, we obtain the
sharp (Lp, Lq) Ulyanov-type inequalities for the Ditzian–Totik moduli of smoothness and
the K-functionals of fractional order.

1. Introduction

The following (Lp, Lq) inequalities of Ulyanov-type between moduli of smoothness of
functions on T play an important role in approximation theory and functional analysis (see,
e.g., [7, 13, 15]):

ωr (f, t)q 6 C

(∫ t

0

(
u−σωr(f, u)p

)q1 du
u

)1/q1

, (1.1)

where r ∈ N, 0 < p 6 q 6 ∞, σ = 1
p − 1

q , and q1 =

{
q, q <∞

1, q = ∞
. Here the r-th moduli of

smoothness of a function f ∈ Lp(T) is given by

ωr (f, δ)p = sup
|h|6δ

‖∆r
hf(x)‖Lp(T) , 1 6 p 6 ∞,

where

∆r
hf(x) = ∆r−1

h (∆hf(x)) and ∆hf(x) = f(x+ h)− f(x).

Recently ([20, 23]) the sharp version of (1.1) was proved in the case 1 < p < q <∞:

ωr (f, t)q 6 C

(∫ t

0

(
u−σωr+σ(f, u)p

)q1 du
u

)1/q

, (1.2)

where ωr(f, u)p is the moduli of smoothness of the (fractional) order r > 0. Moreover, it
turned out that (1.2) also holds if (p, q) = (1,∞); see [21]. In this case σ = 1 and one can
work with the classical (not necessary fractional) moduli of smoothness. On the other hand,
(1.2) is not true ([21]) for 1 = p < q <∞ or 1 < p < q = ∞.

In the present paper, we consider a nonperiodic case, namely Lp spaces with Jacobi
weights on an interval, and obtain inequalities similar to (1.2) for the fractional K-functionals
and Ditzian–Totik moduli of smoothness. We start with notation.

Key words and phrases. Jacobi weights, Landau type inequalities, Hardy–Littlewood type inequalities,
K-functionals, Ditzian–Totik moduli of smoothness, sharp Ulyanov inequality.
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Denote by w(a,b)(x) = (1 − x)a(1 + x)b, a, b > −1, the Jacobi weight on [−1, 1]. For

1 6 p < ∞, let L
(a,b)
p be the space of all functions f measurable on [−1, 1] with the finite

norm

‖f‖p,(a,b) =

(∫ 1

−1
|f(x)|pw(a,b)(x)dx

)1/p

.

If a = b = 0, we write Lp = L
(a,b)
p , ‖·‖p = ‖·‖p,(0,0). In the case p = ∞, we set L

(a,b)
p := C[−1, 1]

and

‖f‖∞,(a,b) = ‖f‖∞ = max
x∈[−1,1]

|f(x)|.

For an arbitrary interval [x1, x2], we set

‖f‖Lp[x1,x2] =

(∫ x2

x1

|f(x)|pdx

)1/p

, 1 6 p <∞, ‖f‖L∞[x1,x2] = max
x∈[x1,x2]

|f(x)|.

For α, β > −1, denote by ψ
(α,β)
k (x), k = 0, 1, . . ., the system of Jacobi polynomials

orthogonal on [−1, 1] with the weight w(α,β) and normalized by the condition
∫ 1

−1

∣∣∣ψ(α,β)
k (x)

∣∣∣
2
w(α,β)(x)dx = 1.

The Jacobi polynomials are the eigenfunctions of the differential operator

D = D
(α,β)
2 =

−1

w(α,β)(x)

d

dx
w(α,β)(x)(1− x2)

d

dx
,

Dψ
(α,β)
k =

(
λ
(α,β)
k

)2
ψ
(α,β)
k , λ

(α,β)
k = (k(k + α+ β + 1))1/2 .

For a function f ∈ L
(α,β)
p , 1 6 p 6 ∞, the Fourier–Jacobi expansion is defined as follows:

f(x) ∼

∞∑

k=0

f̂
(α,β)
k ψ

(α,β)
k (x), (1.3)

where

f̂
(α,β)
k =

∫ 1

−1
f(x)ψ

(α,β)
k (x)w(α,β)(x)dx, k = 0, 1, 2, . . .

Let σ > 0. If there exists a function g ∈ L
(α,β)
1 such that its Fourier–Jacobi expansion has

the form

g ∼

∞∑

k=1

(
λ
(α,β)
k

)σ
f̂
(α,β)
k ψ

(α,β)
k ,

then we use the notation

g = D(α,β)
σ f

and we call D
(α,β)
σ f the fractional derivative of order σ of the function f . If there exists a

function h ∈ L
(α,β)
1 such that its Fourier–Jacobi expansion has the form

h ∼ f̂
(α,β)
0 +

∞∑

k=1

(
λ
(α,β)
k

)−σ
f̂
(α,β)
k ψ

(α,β)
k ,

then we use the notation

h = I(α,β)
σ f

and we call I
(α,β)
σ f the fractional integral of order σ of the function f . Notice that I

(α,β)
σ ,

σ > 0, is a bounded linear operator on L
(α,β)
1 (see, e.g., [3, Sec. 5, pp. 789–790]).
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The K-functional corresponding to the differential operator D(α,β) and a real positive
number r is defined by

Kr(f,D(α,β)
r , t)p,(α,β) = inf

{
‖f − g‖p,(α,β) + tr‖D(α,β)

r g‖p,(α,β) : g ∈W
r,(α,β)
p,(α,β)

}
(1.4)

(see [10, (1.9)]), where W
r,(α,β)
p,(α,β) =

{
g : g, D

(α,β)
r g ∈ L

(α,β)
p

}
.

The main result of this paper is the following

Theorem 1. Let 1 < p < q <∞, r > 0, α > β > −1, α > −1/2. Suppose also that

σ = (2α+ 2)

(
1

p
−

1

q

)
.

If f ∈ L
(α,β)
p and ∫ 1

0

(
u−σKr+σ(f,D

(α,β)
r+σ , u)p,(α,β)

)q du
u
<∞,

then f ∈ L
(α,β)
q and

Kr(f,D(α,β)
r , t)q,(α,β) 6 C

(∫ t

0

(
u−σKr+σ(f,D

(α,β)
r+σ , u)p,(α,β)

)q du
u

)1/q

.

The rest of the paper is organized as follows. In Section 2 we obtain the key result to
get sharp Ulyanov inequalities – the weighted inequalities of Hardy–Littlewood and Landau
type for functions defined on the interval [−1, 1]. Section 3 contains the definition of frac-
tional K-functionals with Jacobi weights and sharp Ulyanov inequalities for K-functionals
(Theorem 3). In Section 4 analogous results for the Ditzian–Totik moduli of smoothness
are obtained. Namely, we study a relationship between these moduli and the corresponding
K-functionals and prove sharp Ulyanov inequalities for the Ditzian–Totik moduli in the case
of 1 6 p 6 q 6 ∞ (Theorem 5).

2. Inequalities for fractional integrals with Jacobi weights

2.1. Landau-type inequalities. We will need the following Hardy-type inequality (see,
e.g., [5] and [19, Theorem 6.2, Example 6.8]). We set 1

q := 0 for q = ∞.

Theorem A. Let 1 6 p 6 q 6 ∞, (p, q) 6= (∞,∞), a > −1
q , x ∈ (0,∞). Then the

inequality

‖f(x)xa‖Lq [0,x]
6 C(p, q, a, x)

∥∥∥f ′(x)xa+h
∥∥∥
Lp[0,x]

holds for any locally absolutely continuous function f on (0, x] with the property f(x) = 0 if

and only if h 6 1−
(
1
p −

1
q

)
.

Let us mention that the quantity C(p, q, a, x) is nondecreasing with respect to x.
The following Landau–type inequality can be found in, e.g., [6, Ch. 2, Th. 5.6, p. 38].

Theorem B. For 1 6 p 6 ∞, ℓ > 2, there is a constant C(ℓ) such that for all r = 0, . . . , ℓ

and any function f with f (ℓ−1) absolutely continuous on
[
−1

2 ,
1
2

]
and f (ℓ) ∈ Lp

[
−1

2 ,
1
2

]
we have

∥∥∥f (r)
∥∥∥
Lp[− 1

2
, 1
2
]
6 C(ℓ)

(
‖f‖Lp[− 1

2
, 1
2
] +
∥∥∥f (ℓ)

∥∥∥
Lp[− 1

2
, 1
2
]

)
.

As a corollary of Theorem A and Theorem B we get
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Lemma 1. Suppose that 1 6 p 6 q 6 ∞, (p, q) 6= (∞,∞), a, b > −1
q , c, d > −1

p , r is a

nonnegative integer, k is a positive integer, and

h = k −

(
1

p
−

1

q

)
.

Then, there exists a constant C = C(p, q, a, b, c, d, r, k) such that for any function f with

f (r+k−1) absolutely continuous on (−1, 1) and f (r+k)w(a+h,b+h) ∈ Lp we have
∥∥∥f (r)w(a,b)

∥∥∥
q
6 C

(∥∥∥fw(c,d)
∥∥∥
p
+
∥∥∥f (r+k)w(a+h,b+h)

∥∥∥
p

)
. (2.1)

Inequality (2.1) is sharp in the following sense. If a− c < r +
(
1
p −

1
q

)
, then for any ε > 0

there exists {fn} ⊂ Ck+r[−1, 1] such that

∥∥∥f (r)n w(a,b)
∥∥∥
q
·

(∥∥∥fnw(c,d)
∥∥∥
1
+
∥∥∥f (r+k)

n w(a+h+ε,b+h)
∥∥∥
p

)−1

→ ∞ as n→ ∞. (2.2)

The analogous statement also holds with respect to the parameter b.

Proof of Lemma 1. It is enough to verify inequality (2.1) for k = 1. The proof in the

general case is by induction on k. Note that f (r) is continuous on
[
−1

2 ,
1
2

]
by our assumption.

We take x ∈
[
−1

2 ,
1
2

]
such that

∣∣∣f (r)(x)
∣∣∣ = min

{ ∣∣∣f (r)(x)
∣∣∣ : x ∈

[
−1

2 ,
1
2

] }
.

Let g(x) = f (r)(x)− f (r)(x), then∥∥∥f (r)w(a,b)
∥∥∥
q
6

∥∥∥gw(a,b)
∥∥∥
q
+
∣∣∣f (r)(x)

∣∣∣
∥∥∥w(a,b)

∥∥∥
q

6

∥∥∥gw(a,b)
∥∥∥
Lq[−1,x]

+
∥∥∥gw(a,b)

∥∥∥
Lq [x,1]

+
∣∣∣f (r)(x)

∣∣∣
∥∥∥w(a,b)

∥∥∥
Lq [−1,1]

.

To estimate the first term, we apply Theorem A (for the interval [−1, x] instead of [0, x])

with h = 1−
(
1
p −

1
q

)
:

∥∥∥gw(a,b)
∥∥∥
Lq[−1,x]

6 2|a|
∥∥∥g(x)(1 + x)b

∥∥∥
Lq [−1,x]

6 2|a|C
∥∥∥g′(x)(1 + x)b+h

∥∥∥
Lq [−1,x]

6 2|a|+|a+h|C
∥∥∥g′(x)(1 − x)a+h(1 + x)b+h

∥∥∥
Lp[−1,x]

6 2|a|+|a+h|C
∥∥∥g′w(a+h,b+h)

∥∥∥
Lp[−1,1]

= 2|a|+|a+h|C
∥∥∥f (r+1)w(a+h,b+h)

∥∥∥
Lp[−1,1]

.

A similar estimate holds for
∥∥gw(a,b)

∥∥
Lq[x,1]

as well.

To estimate
∣∣f (r)(x)

∣∣, we apply Theorem B:

∣∣∣f (r)(x)
∣∣∣ 6

∥∥∥f (r)
∥∥∥
L1

[

−
1
2 ,

1
2

] 6 C

(
‖f‖

L1

[

−
1
2 ,

1
2

] +
∥∥∥f (r+1)

∥∥∥
L1

[

−
1
2 ,

1
2

]

)

6 2|c|+|d|+|a+h|+|b+h|C

(∥∥∥fw(c,d)
∥∥∥
Lp[−1,1]

+
∥∥∥f (r+1)w(a+h,b+h)

∥∥∥
Lp[−1,1]

)
,

where C depends only on r + 1. Thus, (2.1) follows.
Let us now show (2.2). Since for any 0 6 ε1 6 ε2 the estimate

w(a+h+ε2,b+h)(x) 6 2ε2−ε1w(a+h+ε1,b+h)(x), x ∈ [−1, 1],

holds, we can assume
0 < ε 6 c− a+ r + 1/p − 1/q. (2.3)
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For m > r + k, consider the sequence of functions

fn(x) =
(
(x+ 1/n − 1)+

)m
, x ∈ [−1, 1] , y+ = max{y, 0}.

It is easy to verify that if µ > 0 and ν > −1/q, then

∥∥((1/n − 1 + x)+
)µ
(1− x)ν

∥∥
q
≍

1

nµ+ν+1/q
as n→ ∞.

Here An ≍ Bn as n → ∞ means that Bn/C 6 An 6 CBn for some positive constant C and
all n. Using this, we get

∥∥∥fnw(c,d)
∥∥∥
p
≍

1

nm+c+1/p
,

∥∥∥f (r)n w(a,b)
∥∥∥
q
≍

1

nm−r+a+1/q
,

∥∥∥f (r+k)
n w(a+h+ε,b+h)

∥∥∥
p
≍

1

nm−r−k+a+h+ε+1/p
=

1

nm−r+a+ε+1/q
.

Under assumption (2.3) we have
∥∥∥fnw(c,d)

∥∥∥
p
+
∥∥∥f (r+k)

n w(a+h+ε,b+h)
∥∥∥
p
≍

1

nm−r+a+ε+1/q
,

and therefore,
∥∥∥f (r)n w(a,b)

∥∥∥
q∥∥fnw(c,d)

∥∥
p
+
∥∥∥f (r+k)

n w(a+h+ε,b+h)
∥∥∥
p

≍ nε as n→ ∞,

concluding the proof. �

2.2. Hardy–Littlewood type inequalities. To prove Hardy–Littlewood type inequal-

ities for the fractional integral I
(α,β)
σ , we will use the Muckenhoupt transplantation theorem

[18, Collorary 17.11], which is written in our notation as follows.

Theorem C. If 1 < p 6 q <∞, α, β, γ, δ > −1, a, b, c, d > −1,

s =
1

p
−

1

q
,

a

q
=
c

p
+
α− γ

2
+

1

2

(
1

p
−

1

q

)
,

b

q
=
d

p
+
β − δ

2
+

1

2

(
1

p
−

1

q

)
,

the quantities A = (c + 1)/p − γ and B = (d + 1)/p − δ are not positive integers, M =

max{0, [A]}, N = max{0, [B]}, f ∈ L
(c,d)
p ,

f̂
(γ,δ)
k = 0, 0 6 k 6M +N − 1,

h is an integer, νk has the form

νk =
J−1∑

j=0

cj(k + 1)−s−j +O
(
(k + 1)−s−J

)

with J > α+ β + γ + δ + 6 + 2M + 2N and 0 6 ρ < 1, then

Tρf(x) =
∞∑

k=0

ρkνkf̂
(γ,δ)
k ψ

(α,β)
k+h (x)

converges for every x ∈ (−1, 1),

‖Tρf‖q,(a,b) 6 C ‖f‖p,(c,d) ,
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where C is independent of ρ and f . Moreover, there is a function Tf in L
(a,b)
q such that

Tρf converges to Tf in L
(a,b)
q as ρ → 1−. If it is also assumed that a + 1 < (α + 1)q and

b+ 1 < (β + 1)q, then

T̂ f
(α,β)

k =

{
0, 0 6 k 6 h− 1

νk−hf̂
(γ,δ)
k−h , max(0, h) 6 k.

The next Hardy–Littlewood inequality is a simple corollary of Theorem C.

Corollary 1. Let 1 < p < q <∞, −1/2 > a > b > −1, α > β > −1, (a+1) < (α+1)p,
(b+ 1) < (β + 1)p, and

σ >
1

p
−

1

q
.

Let also f ∈ L
(a,b)
p . Then there exists C independent of f such that

∥∥∥I(α,β)
σ f

∥∥∥
q,(a,b)

6 C
∥∥f
∥∥
p,(a,b)

. (2.4)

In the special case (α, β) = (a, b), the Hardy–Littlewood inequality (2.4) was studied by
Askey and Wainger [2, Sec. J] (see also [1]) and later by Bavinck and Trebels [3, Theorem
5.4], [4, Theorems 1 and 1’].

Theorem D ([2, 4]). Let 1 < p < q <∞, a > b > −1, a+ b > −1, and

σ > (2a+ 2)

(
1

p
−

1

q

)
.

If f ∈ L
(a,b)
p , then I

(a,b)
σ f ∈ L

(a,b)
q and

∥∥∥I(a,b)
σ f

∥∥∥
q,(a,b)

6 C(p, q, a, b)
∥∥f
∥∥
p,(a,b)

.

For (α, β) 6= (a, b) we have the following result.

Theorem 2. Let 1 < p < q <∞, a > b > −1, a > −1/2, α > β > −1,

p(α− β) 6 2(a− b) 6 q(α− β), (2.5)

the quantities A = (a + 1)/p − α and B = (b + 1)/p − β be not positive integers, and either

α = a, or α > a and q > 2, or α < a and p < 2. Let

σ > (2a+ 2)

(
1

p
−

1

q

)
, (2.6)

f ∈ L
(a,b)
p ∩ L

(α,β)
1 and

f̂
(α,β)
k = 0, 0 6 k 6 max {0, [A]} +max {0, [B]} − 1. (2.7)

Then there exists C independent of f such that
∥∥∥I(α,β)

σ f
∥∥∥
q,(a,b)

6 C
∥∥f
∥∥
p,(a,b)

. (2.8)

Proof. It is sufficient to prove this theorem for polynomials. Indeed, suppose that (2.8)

holds for polynomials. Consider a sequence of polynomials {Qm} convergent to f in L
(a,b)
p

and L
(α,β)
1 . Then {I

(α,β)
σ Qm} is a Cauchy sequence in L

(a,b)
q and it converges to some function

g in L
(a,b)
q . Without loss of generality we can assume that {I

(α,β)
σ Qm} converges to g a.e. on

[−1, 1]. Since the operator I
(α,β)
σ is continuous in L

(α,β)
1 , the sequence {I

(α,β)
σ Qm} converges
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to I
(α,β)
σ f in L

(α,β)
1 . There is a subsequence {I

(α,β)
σ Qmj

} convergent to I
(α,β)
σ f a.e. on [−1, 1].

Therefore, g = I
(α,β)
σ f .

Let f be a polynomial, i.e.,

f =

∞∑

k=0

ckψ
(α,β)
k ,

where ck = f̂
(α,β)
k and ck = 0 for k > deg(f).

Case 1. Consider α > a, q > 2. More precisely, under assumption of the theorem, the
following relations are possible: α > a and q > 2 or α = a and q > 2.

Now, we define α1 and p1. If α > a, then we set

α1 =
qα− 2a

q − 2
,

α1

p1
=
a

p
+
α1 − α

2
+

1

2

(
1

p
−

1

p1

)
.

In this case, we have
2α1 + 1

p1
=

2a+ 1

p
+

2(α− a)

q − 2
and

(2α1 + 2)

(
1

p1
−

1

q

)
+

1

p
−

1

p1
= (2a+ 2)

(
1

p
−

1

q

)
. (2.9)

Notice that condition α > a implies that α1 > max{a, α, 0} and p < p1 < q.
If α = a, then we set α1 = α, p1 = p.

We divide the rest of the proof in Case 1 into three steps.

Step 1.1. We apply Theorem C with (q, p) = (p1, p), (α, β) = (α1, α1), (γ, δ) = (α, β),

(c, d) = (a, b), h = 0, s = σ1 =
1
p −

1
p1
, and

νk =
(
λ
(α1,α1)
k

)−σ1

.

Then we have a = α1,

b

p1
=
b

p
+
α1 − β

2
+

1

2

(
1

p
−

1

p1

)
=
α1

p1
−

2(a− b)− p(α− β)

2p
, (2.10)

A =
a+ 1

p
− α, B =

b+ 1

p
− β.

Therefore, under condition (2.7) for any ρ ∈ (0, 1), we obtain the inequality
∥∥∥∥∥c0 +

∞∑

k=1

ρk
(
λ
(α1,α1)
k

)−σ1

ckψ
(α1,α1)
k

∥∥∥∥∥
p1,(α1,b)

6 C‖f‖p,(a,b), (2.11)

where C is independent of f and ρ. Since f is a polynomial, the sum is finite, and we can
rewrite (2.11) as

∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α1,α1)
k

)−σ1

ckψ
(α1,α1)
k

∥∥∥∥∥
p1,(α1,b)

6 C‖f‖p,(a,b).

Relations (2.5) and (2.10) show that α1 > b, and hence,
∥∥∥∥∥c0 +

∞∑

k=1

(
λ
(α1,α1)
k

)−σ1

ckψ
(α1,α1)
k

∥∥∥∥∥
p1,(α1,α1)

6 C‖f‖p,(a,b). (2.12)
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Step 1.2. In view of (2.6) and (2.9), we have

σ − σ1 > (2α1 + 2)

(
1

p1
−

1

q

)
,

we can apply Theorem D for the pair of spaces L
(α1,α1)
q and L

(α1,α1)
p1 to get

∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α1,α1)
k

)−σ
ckψ

(α1,α1)
k

∥∥∥∥∥
q,(α1,α1)

6 C

∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α1,α1)
k

)−σ1

ckψ
(α1,α1)
k

∥∥∥∥∥
p1,(α1,α1)

.

(2.13)

Step 1.3. We use Theorem C once again with (q, p) = (q, q), (α, β) = (α, β), (γ, δ) = (α1, α1),

(c, d) = (α1, α1), and

νk =
(
λ
(α,β)
k /λ

(α1,α1)
k

)−σ
.

Then s = 0, a = a,

b

q
=
α1

q
+
β − α1

2
=
b

q
−
q(α− β)− 2(a− b)

2q
, (2.14)

and

A = B =
α1 + 1

q
− α1 = α1

(
1

q
− 1

)
+

1

q
6 −

1

2

(
1

q
− 1

)
+

1

q
< 1, [A] = [B] = 0.

We have∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α,β)
k

)−σ
ckψ

(α,β)
k

∥∥∥∥∥
q,(a,b)

6 C

∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α1,α1)
k

)−σ
ckψ

(α1,α1)
k

∥∥∥∥∥
q,(α1,α1)

.

Relations (2.5) and (2.14) show that b 6 b, and hence,
∥∥∥∥∥c0 +

∞∑

k=1

(
λ
(α,β)
k

)−σ
ckψ

(α,β)
k

∥∥∥∥∥
q,(a,b)

6 2b−b

∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α,β)
k

)−σ
ckψ

(α,β)
k

∥∥∥∥∥
q,(a,b)

. (2.15)

Finally, combining (2.12), (2.13), and (2.15), we obtain inequality (2.8).

Case 2. Consider α 6 a, p 6 2. More precisely, under assumption of the theorem, the
following relations are possible: α < a and p < 2 or α = a and p 6 2.

Now, we define α1 and q1. If α < a, then we set

α1 =
2a− pα

2− p
,

a

q
=
α1

q1
+
α− α1

2
+

1

2

(
1

q1
−

1

q

)
.

In this case, we have
2α1 + 1

q1
=

2a+ 1

q
+

2(a− α)

2− p

and

(2α1 + 2)

(
1

p
−

1

q1

)
+

1

q1
−

1

q
= (2a+ 2)

(
1

p
−

1

q

)
. (2.16)

Notice that condition α < a implies that α1 > max{a, α, 0} and p < q1 < q.
If α = a, then we set α1 = α, q1 = q.

We can argue similarly to the proof in Case 1 dividing the rest of the proof into three
steps.
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Step 2.1. We are going to use Theorem C with (q, p) = (p, p), (α, β) = (α1, α1), (γ, δ) =

(α, β), (c, d) = (a, b), h = 0, s = 0, and νk = 1. Then a = α1,

b

p
=
b

p
+
α1 − β

2
=
α1

p
−

2(a− b)− p(α− β)

2p
, (2.17)

A =
a+ 1

p
− α, B =

b+ 1

p
− β.

Therefore, under condition (2.7) for any ρ ∈ (0, 1), we obtain the inequality∥∥∥∥∥c0 +
∞∑

k=1

ρkckψ
(α1,α1)
k

∥∥∥∥∥
p,(α1,b)

6 C‖f‖p,(a,b), (2.18)

where C does not depend on f and ρ. Since f is a polynomial, the sum is finite. Taking into
account (2.5) and (2.17), we conclude that α1 > b, and hence, and we can rewrite (2.18) as∥∥∥∥∥c0 +

∞∑

k=1

ckψ
(α1,α1)
k

∥∥∥∥∥
p,(α1,α1)

6 C‖f‖p,(a,b). (2.19)

Step 2.2. Set σ1 = σ −
(

1
q1

− 1
q

)
. In view of (2.6) and (2.16), we have

σ1 > (2α1 + 1)

(
1

p
−

1

q1

)
.

We can apply Theorem D for the pair of spaces L
(α1,α1)
q1 and L

(α1,α1)
p to get

∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α1,α1)
k

)−σ1

ckψ
(α1,α1)
k

∥∥∥∥∥
q1,(α1,α1)

6 C

∥∥∥∥∥c0 +
∞∑

k=1

ckψ
(α1,α1)
k

∥∥∥∥∥
p,(α1,α1)

. (2.20)

Step 2.3. We use Theorem C once again with (q, p) = (q, q1), (α, β) = (α, β), (γ, δ) = (α1, α1),

(c, d) = (α1, α1), and

νk =
(
λ
(α,β)
k

)−(σ−σ1) (
λ
(α1,α1)
k /λ

(α,β)
k

)σ1

.

Hence, s = σ − σ1 =
1
q1

− 1
q , a = a,

b

q
=
α1

q1
+
β − α1

2
+

1

2

(
1

q1
−

1

q

)
=
b

q
−
q(α− β)− 2(a− b)

2q
, (2.21)

and

A = B =
α1 + 1

q1
− α1 = α1

(
1

q1
− 1

)
+

1

q1
6 −

1

2

(
1

q1
− 1

)
+

1

q1
< 1, [A] = [B] = 0.

We have∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α,β)
k

)−σ
ckψ

(α,β)
k

∥∥∥∥∥
q,(a,b)

6 C

∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α1,α1)
k

)−σ1

ckψ
(α1,α1)
k

∥∥∥∥∥
q1,(α1,α1)

.

Taking into account (2.5) and (2.21), we see that b 6 b, and hence,∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α,β)
k

)−σ
ckψ

(α,β)
k

∥∥∥∥∥
q,(a,b)

6 2b−b

∥∥∥∥∥c0 +
∞∑

k=1

(
λ
(α,β)
k

)−σ
ckψ

(α,β)
k

∥∥∥∥∥
q,(a,b)

. (2.22)

Finally, combining (2.19), (2.20), and (2.22), we obtain inequality (2.8).
�
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3. Ulyanov-type inequalities for K-functionals

Definitions and facts, given in this section and in the next one, are based on the books
[14, 16]; see also [8, 10] and the recent survey [11].

In this section, we assume that 1 6 p 6 ∞, a, b > −1, α, β > −1 and

a+ 1

p
− α < 1,

b+ 1

p
− β < 1. (3.1)

Then, since L
(a,b)
p ⊂ L

(α,β)
1 , the Fourier–Jacobi expansion (1.3) is well-defined for any

f ∈ L
(a,b)
p .

Denote by Πn the set of all algebraic polynomials of degree at most n, Π = ∪n>0Πn.
Let Pn,f = Pn(f)p,(a,b), Pn,f ∈ Πn, be a near best polynomial approximant of a function

f ∈ L
(a,b)
p , that is,

‖f − Pn,f‖p,(a,b) 6 CEn(f)p,(a,b), En(f)p,(a,b) = inf
{
‖f − P‖p,(a,b) : P ∈ Πn

}
. (3.2)

The K-functional corresponding to the differential operator D(α,β) and a real positive
number r is defined by

Kr(f,D(α,β)
r , t)p,(a,b) = inf

{
‖f − g‖p,(a,b) + tr‖D(α,β)

r g‖p,(a,b) : g ∈W
r,(α,β)
p,(a,b)

}
(3.3)

(see [10, (1.9)]), where W
r,(α,β)
p,(a,b) =

{
g : g, D

(α,β)
r g ∈ L

(a,b)
p

}
. The following realization result

holds:

Kr
(
f,D(α,β)

r , 1/n
)
p,(a,b)

≍ ‖f − Pn,f‖p,(a,b) + n−r‖D(α,β)
r Pn,f‖p,(a,b), 1 < p <∞. (3.4)

It is a corollary of Theorem 6.2 in [10]. To apply this theorem, we have to show that the
Cesàro operator Cℓ

n given by

Cℓ
n(f) =

n∑

k=0

(
1− k

n+1

)(
1− k

n+2

)
· · ·
(
1− k

n+ℓ

)
f̂kψ

(α,β)
k

is bounded in L
(a,b)
p for some ℓ. This fact is mentioned in [8, Sec. 3]. Moreover, from [18,

Theorem 1.10, p. 4] (see also [8, Theorem M]) it easily follows that the operator Cℓ
n is bounded

in L
(a,b)
p for any

ℓ > max
{∣∣∣2(a+1)

p − α− 1
∣∣∣ ,
∣∣∣ 2(b+1)

p − β − 1
∣∣∣ ,

∣∣∣2(a+1)
p − α− 1

2 −
1
p

∣∣∣ ,
∣∣∣ 2(b+1)

p − β − 1
2 −

1
p

∣∣∣ ,
∣∣∣ 2p(a− b)− (α− β)

∣∣∣
}
.

Note that one can equivalently consider the boundedness of the Riesz means, see [22, Theo-
rem 3.19].

Now we formulate and prove the main result – Ulyanov type inequality for K-functionals
with Jacobi weights. Theorem 3 contains Theorem 1, stated in Introduction, as a particular
case.

Theorem 3. Let 1 < p < q < ∞ and r > 0. Suppose that α, β > −1, a > b > −1,
a > −1/2, inequalities (3.1) hold, and either (α, β) = (a, b), or

p(α− β) 6 2(a− b) 6 q(α− β),

and α = a, or α > a, q > 2, or α < a, p < 2.
Suppose also that

σ = (2a+ 2)

(
1

p
−

1

q

)
.
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If f ∈ L
(a,b)
p and ∫ 1

0

(
u−σKr+σ(f,D

(α,β)
r+σ , u)p,(a,b)

)q du
u
<∞,

then f ∈ L
(a,b)
q and

Kr(f,D(α,β)
r , t)q,(a,b) 6 C

(∫ t

0

(
u−σKr+σ(f,D

(α,β)
r+σ , u)p,(a,b)

)q du
u

)1/q

. (3.5)

Theorem 3 extends the results of [13, Theorem 11.2] and [24, Section 3.3.1] in two
directions. First, our estimate involves the K-functional of order r+σ, i.e., we get the sharp
estimate. Second, we consider the case when (α, β) 6= (a, b). We also remark that the sharp
Ulyanov inequality for functions on S

d−1 was recently proved in [25].

Proof. Using monotonicity properties of theK-functional, it is enough to verify inequal-
ity (3.5) for t = 1/n, n ∈ N. We have

Kr(f,D(α,β)
r , 1/n)q,(a,b) 6 C

(
‖f − Pn,f‖q,(a,b) + n−r‖D(α,β)

r Pn,f‖q,(a,b)

)
, (3.6)

where Pn,f is given by (3.2). To estimate the first term, we apply [13, Theorem 4.1, (4.6)’]
to get

‖f − Pn,f‖q,(a,b) 6 C

(
∞∑

k=n

kqσ−1‖f − Pk,f‖
q
p,(a,b)

)1/q

.

In view of the realization result (3.4), we obtain

‖f − Pn,f‖q,(a,b) 6 C

(
∞∑

k=n

kqσ−1‖f − Pk,f‖
q
p,(a,b)

)1/q

6 C

(
∞∑

k=n

kqσ−1Kr+σ(f,D
(α,β)
r+σ , 1/k)

q
p,(a,b)

)1/q

6 C

(∫ t

0

(
u−σKr+σ(f,D

(α,β)
r+σ , u)p,(a,b)

)q du
u

)1/q

.

To estimate the second term in (3.6), we use Theorem D or Theorem 2 depending on whether
(α, β) = (a, b) or (α, β) 6= (a, b):

n−r
∥∥∥D(α,β)

r Pn,f

∥∥∥
q,(a,b)

6 Cnσn−(r+σ)
∥∥∥D(α,β)

r+σ Pn,f

∥∥∥
p,(a,b)

6 CnσKr+σ(f,D
(α,β)
r+σ , 1/n)p,(a,b).

To complete the proof of (3.5), we have

nσKr+σ(f,D
(α,β)
r+σ , 1/n)p,(a,b) 6 C

(∫ 1/n

1/2n

(
u−σKr+σ(f,D

(α,β)
r+σ , u)p,(a,b)

)q du
u

)1/q

.

�

4. Ulyanov-type inequalities for Ditzian–Totik moduli of smoothness

The (global) weighted modulus of smoothness of order r > 1 is given by

ωr
ϕ(f, t)p,(a,b) = Ωr

ϕ(f, t)p,(a,b) + inf
P∈Πr−1

∥∥(f − P )w
∥∥
Lp[−1,−1+4k2t2]

+ inf
P∈Πr−1

‖(f − P )w‖Lp [1−4k2t2, 1],
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where w =
(
w(a,b)

)1/p
,

Ωr
ϕ(f, t)p,(a,b) = sup

0<h6t
‖∆r

hϕfw‖Lp[−1+4k2t2, 1−4k2t2]

and

∆r
hϕf(x) =

r∑

i=0

(−1)i
(
r

i

)
f
(
x+ r−2i

2 hϕ(x)
)
.

Note that (see [16, (2.5.7)]) this definition is equivalent to the one given in [14, Chapter 6,
Appendix B].

Let Kr
ϕ(f, t)p,(a,b), r ∈ N, be the K-functional for the pair of spaces

(
L
(a,b)
p ,W r

p,(a,b)

)
,

where W r
p,(a,b) consists of functions g ∈ L

(a,b)
p such that g(r−1) ∈ ACloc and ϕrg(r) ∈ L

(a,b)
p

(see [14, (6.1.1)]):

Kr
ϕ(f, t)p,(a,b) = inf

{
‖f − g‖p,(a,b) + tr‖ϕrg(r)‖p,(a,b) : g ∈W r

p,(a,b)

}
. (4.1)

It is known that Kr
ϕ(f, t)p,(a,b) ≍ ωr

ϕ(f, t)p,(a,b) for a, b > 0; see [14, Theorem 6.1.1]. Moreover,
we have the following realization result:

ωr
ϕ(f, t)p,(a,b) ≍ ‖f − Pn,f‖p,(a,b) + tr‖ϕrP

(r)
n,f‖p,(a,b), [1/t] = n. (4.2)

The proof of this equivalence (cf. [12]) is based on the Jackson-type inequality and the

estimate of tr‖ϕrψ(r)‖p,(a,b) via ωr
ϕ(f, t)p,(a,b) (the Nikolskii–Stechkin type inequality). The

Jackson-type inequality was obtained in [14, Theorem 7.2.1] for the unweighted case and in
[16, Sec. 2.5.2, (2.5.17)] for the weighted case. The unweighted version of the Nikolskii–
Stechkin type inequality was proved in [14, Theorem 7.3.1]. This argument can be used to
show the weighted version.

The relation between K-functionals (4.1) and (3.3) in the case when r is positive integer
follows from Corollary 2 below. Note that the case (α, β) = (a, b) is due to Dai and Ditzian
[8, Theorem 7.1] and is based on the Muckenhoupt transplantation theorem. We follow the
idea of their proof and first obtain the following result.

Theorem 4. Let 1 < p < ∞, r be a positive integer, and a, b, α, β > −1 be such that

(3.1) holds. Then there exists a constant C such that for any Q ∈ Π, we have
∥∥∥ϕrQ(r)

∥∥∥
p,(a,b)

6 C
∥∥∥D(α,β)

r Q
∥∥∥
p,(a,b)

, (4.3)

∥∥∥D(α,β)
r

(
Q− S

(α,β)
r−1 Q

)∥∥∥
p,(a,b)

6 C
∥∥∥ϕrQ(r)

∥∥∥
p,(a,b)

, (4.4)

where S
(α,β)
r−1 Q is the (r − 1)-th partial sum of the Fourier–Jacobi expansion of Q, i.e.,

S
(α,β)
r−1 Q =

r−1∑

k=0

Q̂
(α,β)
k ψ

(α,β)
k .

Proof. The proof of (4.3) and (4.4) is based on Theorem C. Since Q̂
(α,β)
k = 0 starting

from certain k, we obtain

D(α,β)
r Q =

∞∑

k=1

(
λ
(α,β)
k

)r
Q̂

(α,β)
k ψ

(α,β)
k =

∞∑

k=1−r

(
λ
(α,β)
k+r

)r
Q̂

(α,β)
k+r ψ

(α,β)
k+r ,

Q(r) =

∞∑

k=r

λkQ̂
(α,β)
k ψ

(α+r,β+r)
k−r =

∞∑

k=0

λk+rQ̂
(α,β)
k+r ψ

(α+r,β+r)
k ,
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where

λk = λk(α, β, r) = λ
(α,β)
k · · ·λ

(α+r−1,β+r−1)
k−r+1 .

To prove inequality (4.3), we apply Theorem C with (p, q) = (p, p), (α, β) = (α + r, β + r),
(γ, δ) = (α, β), (c, d) = (a, b), h = −r, and

νk = λk/
(
λ
(α,β)
k

)r
.

Then s = 0,
(
a, b
)
= (a + pr/2, b + pr/2), A = (a + 1)/p − α, and B = (b + 1)/p − β. On

account of (3.1), we conclude that A < 1, B < 1, and therefore, all conditions of Theorem C
are satisfied. Hence, we get

∥∥∥ϕrQ(r)
∥∥∥
p,(a,b)

=
∥∥∥Q(r)

∥∥∥
p,(a+pr/2,b+pr/2)

6 C
∥∥∥D(α,β)

r Q
∥∥∥
p,(a,b)

.

Let us now obtain (4.4). We remark that g = D
(α,β)
r

(
Q− S

(α,β)
r−1 Q

)
is a polynomial and

its Fourier–Jacobi coefficients satisfy ĝ
(α,β)
k = 0 for 0 6 k 6 r− 1. We apply Theorem C with

(p, q) = (p, p), (α, β) = (α, β), (γ, δ) = (α+ r, β + r), (c, d) = (a+ pr/2, b+ pr/2), h = r, and

νk =
(
λ
(α,β)
k

)r
/λk.

Then s = 0,
(
a, b
)
= (a, b), A = (a + 1)/p − α − r/2 < 1, and B = (b+ 1)/p − β − r/2 < 1.

Therefore, all conditions of Theorem C are satisfied, and we arrive at
∥∥∥D(α,β)

r

(
Q− S

(α,β)
r−1 Q

)∥∥∥
p,(a,b)

6 C
∥∥∥Q(r)

∥∥∥
p,(a+pr/2,b+pr/2)

= C
∥∥∥ϕrQ(r)

∥∥∥
p,(a,b)

.

�

Corollary 2. Under assumptions of Theorem 4, there exists a constant C such that for

any f ∈ L
(a,b)
p and t ∈ (0, t0) we have

Kr
ϕ(f, t)p,(a,b) 6 CKr(f,D(α,β)

r , t)p,(a,b) (4.5)

and

Kr(f,D(α,β)
r , t)p,(a,b) 6 C

(
Kr

ϕ(f, t)p,(a,b) + tr‖f‖p,(a,b)
)
.

Proof. First, (4.3) and the realization result (4.2) yield that

Kr
ϕ(f, t)p,(a,b) 6 ‖f − Pn,f‖p,(a,b) + tr‖ϕrP

(r)
n,f‖p,(a,b)

6 C
(
‖f − Pn,f‖p,(a,b) + tr‖D(α,β)

r Pn,f‖p,(a,b)

)
6 CKr(f,D(α,β)

r , t)p,(a,b),

which is (4.5).
Second, under condition (3.1), the operator A : Π → Πr−1 given by

A(Q) = D(α,β)
r S

(α,β)
r−1 Q

is bounded in L
(a,b)
p , i.e.,

‖D(α,β)
r S

(α,β)
r−1 Q‖p,(a,b) 6 C(p, a, b, α, β, r)‖Q‖p,(a,b). (4.6)

Using this, we obtain

Kr(f,D(α,β)
r , t)p,(a,b) 6 ‖f − Pn,f‖p,(a,b) + tr‖D(α,β)

r Pn,f‖p,(a,b)

6 ‖f − Pn,f‖p,(a,b) + tr‖D(α,β)
r (Pn,f − S

(α,β)
r−1 Pn,f )‖p,(a,b) + tr‖D(α,β)

r S
(α,β)
r−1 Pn,f‖p,(a,b).



14 POLINA GLAZYRINA AND SERGEY TIKHONOV

Finally, (4.4) and (4.6) imply

Kr(f,D(α,β)
r , t)p,(a,b) 6 C

(
‖f − Pn,f‖p,(a,b) + t−r‖ϕrP

(r)
n,f‖p,(a,b) + tr‖Pn,f‖p,(a,b)

)

6 C
(
Kr

ϕ(f, t)p,(a,b) + tr‖f‖p,(a,b)
)
.

�

It is proved in [13, Theorem 11.2] that for f ∈ Lp, 0 < p < q 6 ∞, and integer r > 1 the
following Ulyanov-type inequality holds:

ωr
ϕ (f, t)q 6 C

[∫ t

0

(
u−σωr

ϕ(f, u)p
)q1 du

u

]1/q1
,

where q1 =

{
q, q <∞

1, q = ∞
, σ = 2

(
1
p − 1

q

)
. The next theorem refines this result.

Theorem 5. Let 1 6 p < q 6 ∞, a > b > 0, r be a positive integer, and

σ = (2a+ 2)

(
1

p
−

1

q

)
.

Suppose that f ∈ L
(a,b)
p and

∫ 1

0

(
u−σωr+[σ]

ϕ (f, u)p,(a,b)

)q1 du
u
<∞.

Then f ∈ L
(a,b)
q and

ωr
ϕ (f, t)q,(a,b) 6 C

[∫ t

0

(
u−σωr+[σ]

ϕ (f, u)p,(a,b)

)q1 du
u

]1/q1
+ CtrEr−1(f)p,(a,b), (4.7)

where

q1 =

{
q, q <∞,

1, q = ∞.

Remark. (A). In particular, (4.7) implies

ωr
ϕ (f, t)q 6 C

[∫ t

0

(
u−1ωr+1

ϕ (f, u)p
)q1 du

u

]1/q1
+ CtrEr−1(f)p,

when 1
p − 1

q > 1
2 , 1 6 p < q 6 ∞, and

ωr
ϕ (f, t)∞ 6 C

∫ t

0
u−2ωr+2

ϕ (f, u)1
du

u
+ CtrEr−1(f)1.

(B). Corollary 2 shows that for 1 < p < q < ∞ and positive integer σ Theorem 5 follows
from Theorem 3.

Proof. The proof is similar to the proof of Theorem 3. The only substantial difference
is that we use Lemma 1 instead of Theorem D and Theorem 2.

Using monotonicity properties of the moduli of smoothness, it is enough to verify inequal-
ity (4.7) for t = 1/n, where n is a positive integer. Let Pn,f be defined by (3.2). Taking into
account that ωr

ϕ(f, t)q,(a,b) ≍ Kr
ϕ(f, t)q,(a,b), we obtain

ωr
ϕ (f, t)q,(a,b) 6 C

(
‖f − Pn,f‖q,(a,b) + n−r‖ϕrP

(r)
n,f‖q,(a,b)

)
. (4.8)
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To estimate the first term, we apply Theorem 4.1 from [13]. Assumption (4.3) of this
theorem is exactly the Nikol’skii inequality

‖Pn‖q,(a,b) 6 Cn
(2a+2)

(

1

p
− 1

q

)

‖Pn‖p,(a,b), Pn ∈ Πn,

where C = C(p, q, a, b), proved in [9, Theorem 4] (see also [17, Ch. 6, Theorem 1.8.4, 1.8.5]).
Therefore, we have

‖f − Pn,f‖q,(a,b) 6 C

(
∞∑

k=n

kq1σ−1‖f − Pk,f‖
q1
p,(a,b)

)1/q1

.

Applying (4.2) and replacing the sum by the integral, we get

‖f − Pn,f‖q,(a,b) 6 C

(
∞∑

k=n

kq1σ−1‖f − Pk,f‖
q1
p,(a,b)

)1/q1

6 C

(
∞∑

k=n

kq1σ−1ωr+[σ]
ϕ (f, 1/k)q1p,(a,b)

)1/q1

6 C

(∫ t

0

(
u−σωr+[σ]

ϕ (f, u)p,(a,b)

)q1 du
u

)1/q1

.

To estimate the second term in (4.8), we use Lemma 1:
∥∥∥ϕrP (r)

n

∥∥∥
q,(a,b)

=
∥∥∥ϕr(Pn − Pr−1)

(r)
∥∥∥
q,(a,b)

6 ‖Pn − Pr−1‖p,(a,b) +
∥∥∥ϕr+2[σ]−σP (r+[σ])

n

∥∥∥
p,(a,b)

.

Further we need the following two-weight inequality proved in [9, Theorem 4]:
∥∥∥ϕr+2[σ]−σP (r+[σ])

n

∥∥∥
p,(a,b)

6 C nσ−[σ]
∥∥∥ϕr+[σ]P (r+[σ])

n

∥∥∥
p,(a,b)

.

Therefore, using monotonicity properties of moduli of smoothness, we get

n−r
∥∥∥ϕr+2[σ]−σP (r+[σ])

n

∥∥∥
p,(a,b)

6 C nσωr+[σ]
ϕ (f, 1/n)p,(a,b)

6 C

[∫ 1/n

1/2n

(
u−σωr+[σ]

ϕ (f, u)p,(a,b)

)q1 du
u

]1/q1
.

To complete the proof we note that ‖Pn − Pr−1‖p,(a,b) 6 2Er−1(f)p,(a,b). �

Acknowledgement. The authors would like to thank F. Dai, Z. Ditzian, and G. Mas-
troianni for fruitful discussions and useful comments on the fractional K-functionals, and the
referee for reading the paper carefully and several valuable comments.

References

[1] R. Askey and S. Wainger, On the behavior of special classes of ultraspherical expansions, I. J. Analyse
Math., 15 (1965), 193–485.

[2] R. Askey and S. Wainger, A convolution structure for Jacobi series, Amer. J. Math., 91, no. 2 (1969),
463–485.

[3] H. Bavinck, A special class of Jacobi series and some applications, J. Math. Anal. Appl., 37 (1972),
767–797.

[4] H. Bavinck, W. Trebels, On Mq
p multipliers for Jacobi expansions, Fourier analysis and approximation

theory (Proc. Colloq., Budapest, 1976), Vol. I, Colloq. Math. Soc. János Bolyai, 19, North-Holland,
Amsterdam-New York, 1978, 101–112.

[5] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull., 21 (1978), 405–408.
[6] R. DeVore, G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.



16 POLINA GLAZYRINA AND SERGEY TIKHONOV

[7] R. DeVore, S. Riemenschneider, R. Sharpley, Weak interpolation in Banach spaces, J. Funct. Anal., 33
(1979), 58–94.

[8] F. Dai, Z. Ditzian, Littlewood-Paley theory and a sharp Marchaud inequality, Acta Sci. Math. (Szeged),
71 (2005), no. 1-2, 65–90.

[9] I. K. Daugavet, S. Z. Rafal’son, Certain inequalities of Markov–Nikolskii type for algebraic polynomials,
Vestnik Leningrad. Univ., 1 (1972), 15–25.

[10] Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar., 81, no. 4 (1998), 323–348.
[11] Z. Ditzian, Polynomial approximation and ωr

ϕ(f, t) twenty years later, Surv. Approx. Theory, 3 (2007),
106–151.

[12] Z. Ditzian, V. H. Hristov, K. G. Ivanov, Moduli of smoothness and K-functionals in Lp, 0 < p < 1,
Constr. Approx., 11, no. 1 (1995), 67–83.

[13] Z. Ditzian, S. Tikhonov, Ul’yanov and Nikol’skii-type inequalities, J. Approx. Theory 133, no. 1 (2005),
100–133.

[14] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, 1987.
[15] D. Haroske, H. Triebel, Embeddings of function spaces: a criterion in terms of differences, Compl. Var.

Ell. Eq., 56, no. 10-11 (2011), 931–944.
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