Stoichiometric analysis of air oxygen consumption in modern vehicles using natural and synthetic fuels

To cite this article: S E Shcheklein and A M Dubinin 2018 IOP Conf. Ser.: Earth Environ. Sci. 177 012020

View the article online for updates and enhancements.

Related content
- Numerical Modelling and Analysis of Hydrostatic Thrust Air Bearings for High Loading Capacities and Low Air Consumption
 Yunluo Yu, Guang Pu and Kyle Jiang
- Building Electricity Consumption as an Indicator of Indirect Carbon Dioxide Emissions
 S Ma’mun, Sukirman, A E Alel et al.
- Calculation air regime of a residential building with individual exhaust channels
 Kaminat Agakhanoiva
Stoichiometric analysis of air oxygen consumption in modern vehicles using natural and synthetic fuels

S E Shcheklein and A M Dubinin
Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia

e-mail: s.e.shcheklein@urfu.ru

Abstract. The study presents analysis results obtained for stoichiometric reactions of fuel oxidization in air for various motor fuels (such as gasoline, diesel fuel, gaseous fuel) and for biomass-converted and coal-based artificial fuels (such as ethanol, methanol, etc.) and also for hydrogen. Based on the analysis results, comparison is carried out for the specific air consumptions and carbon dioxide emissions of the combustion products. At a temperature of, which is an ultimate combustion process temperature to be dictated by the achievable properties of structural materials made available for the state-of-the-art engine engineering, the air excess factors are found, the actual air and fuel consumptions are determined, and carbon dioxide emissions are evaluated for the variety of fuels. The calculated data are presented for the greenhouse effect caused by the use of the various natural and synthetic fuels in transport applications. In the cases of using hydrocarbon and hydrogen fuels, an abnormally high consumption of the atmospheric air is theoretically evaluated. To reduce the environmental impact, methane-based fuels, bio-ethanol and bio-methanol-based fuels are to be recommended for wider transport vehicle applications. The analysis method presented in the study offers a universal tool to be instrumental in performing analysis of any fuel compositions both already existing and to be developed for future applications.

Keywords: stoichiometry, motor fuels, gasoline, diesel, ethanol, methanol, hydrogen.

1. Introduction
The use of any fuel occurs as a result of their huge air flow oxidation with formation of polluting carbon dioxide and water vapor. Known environmental impact studies environment emissions engines operating on refined petroleum products [1]. However, in a world increasingly acquire new fuels derived from plant materials, synthesis gas (methanol), fermentation of glucose (ethanol), the decomposition of water into hydrogen and oxygen (including renewable energy) of natural and anthropogenic hydrocarbons by their conversion [2–6]. These types of fuels for harmful emissions from their air-oxidation on the environment not investigated. In this work, performed a quantitative analysis of the air pollution of the atmosphere carbon dioxide and water vapor for common synthetic fuels. The influence of air flow coefficient on output of harmful emissions. The results are compared with the emissions from the oxidation of fuels derived from petroleum.
2. Methods of analysis of the influence of oxidation of fuels pollution Environment

2.1. Analysis of the stoichiometric oxidation of fuels when air flow coefficient equal to 1 (α = 1).
It is known that complete oxidation of fuel in the air stehiometricheskimi is described by equations that depend on the chemical composition of the fuel. Composition when α = 1 is the theoretical ratio of fuel and air, which in the process of oxidation of oxygen of the air and fuel to be spent completely without residue.

In a general form [7], the stoichiometric equations for hydrocarbons and alcohols are expressed with the Equations (1), (2) as follows:

\[
C_mH^n + (m + n/4) (O_2 + 3.76N_2) = mCO_2 + n/2 H_2O +3.76 (m + n/4) N_2 + Q
\] \quad \text{(1)}

\[
C^mH_{2m+1} OH + 1.5m (O_2 + 3.76N_2) = mCO_2 + (m+1) H_2O +3.76 (1.5 m) N_2 + Q
\] \quad \text{(2)}

Table 1 summarizes the air to fuel ratio data for the most common types of motor fuels.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Formula</th>
<th>Stoichiometric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>H2</td>
<td>H2+0.5(O_2+3.76 N_2) = H_2O + 1.88N_2</td>
</tr>
<tr>
<td>Ethanol</td>
<td>C2 H5 OH</td>
<td>C2 H5 OH+3(O2 +3.76 N_2) =2CO2+3H_2O + 11.28N_2</td>
</tr>
<tr>
<td>Methanol</td>
<td>C H3 OH</td>
<td>C H3 OH+1.5(O2 +3.76 N_2) =CO2+2H_2O + 5.64N_2</td>
</tr>
<tr>
<td>Gasoline</td>
<td>C7 H16</td>
<td>C7 H16 +11(O2 +3.76 N_2) =7CO2+8H_2O + 41.36N_2</td>
</tr>
<tr>
<td>Diesel</td>
<td>C8 H18</td>
<td>C8 H18+12.5(O2 +3.76 N_2) =8CO2+9H_2O + 47N_2</td>
</tr>
<tr>
<td>Methane</td>
<td>CH4</td>
<td>CH4+2(O2+3.76N2)=CO2+2H_2O+7.52N2</td>
</tr>
</tbody>
</table>

2.2. Analysis of the stoichiometric oxidation of fuels with an air flow of larger units of α > 1.
However, modern internal combustion engines are designed to operate at much lower combustion temperatures, which is fed into the working volume of the engine fuel mixtures, fortified with excess air. The ratio of the actual flow rate of oxidant (air) to the required for complete oxidation is characterized by excess air coefficient-α. In this case, the formula (1) and (2) acquire the following form:

\[
C_mH_{αn}α (m+n/4) (O_2 + 3.76 N_2) = mCO_2 + n/2 H_2O +47N_2
\] \quad \text{(3)}

\[
C_mH_{2m+1}α OH + α(1.5m) (O_2 + 3.76N_2) = mCO_2 + (m+α)H_2O +3.76(1.5m)N_2 + α(1.5m)(O_2+3.76N_2)
\] \quad \text{(4)}

2.3. Analysis of the influence of air flow coefficient on temperature oxidation of fuels (α = 1).
According to the stoichiometric equation, oxidation of fuel is characterized with a certain temperature of combustion process described with Equation (5) [8]

\[
Q^p_α = C^d_α(t^c_α) \cdot t^c_α
\] \quad \text{(5)}

where \(C^d_α(t^c_α)\) is the true isobaric specific heat of oxidation products at oxidation temperature, measured in MJ/(kg of fuel), and \(t^c_α\) is theoretical oxidation temperature, °C.

The method for determining theoretical oxidation temperature actually means [8, 9] finding a temperature, in the adiabatic conditions, at which the equality of combustion products enthalpies occurs \(C^d_α(t^c_α) \cdot t^c_α\), and finding the lowest heat of fuel combustion \(Q^p_α\).

Table 2 summarizes the calculation results, oxidation temperatures, air consumptions and oxidation product yields at α = 1.
It is seen from Table 2 that at $\alpha = 1$ complete oxidation of fuel occurs at elevated temperatures, with a large amount of free air being consumed. Fuels that consume especially great volumes of air are hydrogen, gasoline, diesel fuel, and methane.

Table 2. Air consumption and oxidation product yields at $\alpha = 1$

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Heat of combustion, MJ/kg</th>
<th>Theoretical oxidation temperature, °C</th>
<th>Air consumption, kg/kg of fuel</th>
<th>CO_2 emission, kg/kg of fuel</th>
<th>Specific fuel consumption, kg/MJ</th>
<th>Specific air consumption, kg/MJ</th>
<th>Specific CO_2 emission, kg/MJ</th>
<th>Specific H₂O yield, kg/MJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>121</td>
<td>2020</td>
<td>34.32</td>
<td>0</td>
<td>0.0083</td>
<td>0.284</td>
<td>0.000</td>
<td>0.061</td>
</tr>
<tr>
<td>Ethanol</td>
<td>27.785</td>
<td>1880</td>
<td>8.95</td>
<td>1.91</td>
<td>0.0360</td>
<td>0.322</td>
<td>0.069</td>
<td>0.152</td>
</tr>
<tr>
<td>Methanol</td>
<td>21.131</td>
<td>1900</td>
<td>6.44</td>
<td>1.38</td>
<td>0.0473</td>
<td>0.305</td>
<td>0.065</td>
<td>0.252</td>
</tr>
<tr>
<td>Gasoline</td>
<td>44</td>
<td>1850</td>
<td>15.1</td>
<td>3.08</td>
<td>0.0227</td>
<td>0.343</td>
<td>0.070</td>
<td>0.074</td>
</tr>
<tr>
<td>Diesel</td>
<td>41.8</td>
<td>1780</td>
<td>15</td>
<td>3.08</td>
<td>0.0239</td>
<td>0.359</td>
<td>0.074</td>
<td>0.082</td>
</tr>
<tr>
<td>Methane</td>
<td>49.09</td>
<td>1860</td>
<td>17.16</td>
<td>2.75</td>
<td>0.0204</td>
<td>0.350</td>
<td>0.056</td>
<td>0.093</td>
</tr>
</tbody>
</table>

2.4. Analysis of the influence of air flow coefficient on temperature oxidation of fuels when $\alpha > 1$

In the process of oxidation of the fuel mixture with excess air combustion of the fuel used for heating of the oxidation products (if $\alpha = 1$) and excess air to a temperature of t_d. Let us consider oxidation at a temperature $t_d = 1400^\circ$C, which corresponds to the level of temperatures achievable in the state-of-the-art engine designs [10]. In this case, fuel oxidation reaction takes somewhat different form (Table 3).

Table 3. Dependence of excess air ratio of fuel

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Excess air factor α</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>1.7</td>
<td>$\text{H}_2 + 0.85(\text{O}_2 + 3.76 \text{ N}_2) = \text{H}_2\text{O} + 3.196\text{N}_2 + 0.352\text{O}_2$</td>
</tr>
<tr>
<td>Ethanol</td>
<td>1.55</td>
<td>$\text{C}_2\text{H}_5\text{OH} + 4.66(\text{O}_2 + 3.76 \text{ N}_2) = 2\text{CO}_2 + 3\text{H}_2\text{O} + 17.52\text{N}_2 + 1.66\text{O}_2$</td>
</tr>
<tr>
<td>Methanol</td>
<td>1.5</td>
<td>$\text{CH}_3\text{OH} + 2.25(\text{O}_2 + 3.76 \text{ N}_2) = \text{CO}_2 + 2\text{H}_2\text{O} + 8.46\text{N}_2 + 0.75\text{O}_2$</td>
</tr>
<tr>
<td>Gasoline</td>
<td>1.6</td>
<td>$\text{C}_2\text{H}_6 + 17.6(\text{O}_2 + 3.76 \text{ N}_2) = 7\text{CO}_2 + 8\text{H}_2\text{O} + 66.17\text{N}_2 + 6.6\text{O}_2$</td>
</tr>
<tr>
<td>Diesel</td>
<td>1.4</td>
<td>$\text{C}_2\text{H}_8 + 17.5(\text{O}_2 + 3.76 \text{ N}_2) = 8\text{CO}_2 + 9\text{H}_2\text{O} + 65.8\text{N}_2 + 5\text{O}_2$</td>
</tr>
<tr>
<td>Methane</td>
<td>1.43</td>
<td>$\text{CH}_4 + 2.86(\text{O}_2 + 3.76\text{N}_2) = \text{CO}_2 + 2\text{H}_2\text{O} + 10.75\text{N}_2 + 0.86\text{O}_2$</td>
</tr>
</tbody>
</table>

Heat loss for dissipation into environment and for dissociation of CO_2 and H_2O and initial fuel and air temperatures are assumed negligible. In this case, Equation (3) takes the form:

$$Q^p_d = [C^p_d(t_d) + (\alpha - 1)C^p_a(t_d)]t_d,$$

where $C^p_d(t_d)$ is the true specific heat of oxidation products at a temperature of t_d, kJ/K·kg of fuel, $C^p_a(t_d)$ is the true isobaric heat of air at a temperature t_d, kJ/K·kg of fuel, Q^p_d is the lowest fuel oxidation heat, kJ/kg of fuel, α is the air excess factor for fuel oxidation; and t_d is the temperature of oxidation products, °C.

From Equation (6) we find the value of α factor at the initial temperature of fuel and air as $t_a = 0$, $t_f = 0$ and the temperature of combustion products t_d in the form

$$\alpha = 1 + [Q^p_d - C^p_a(t_d)]/[C^p_a(t_d)].$$

(7)
Table 4 summarizes the results of calculating the excess air factor, air consumption and oxidation product yields.

Table 4. Excess air factor and air consumption, and product yield at an oxidation temperature of 1,400 °C.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Air excess factor</th>
<th>Air consumption, kg/kg of fuel</th>
<th>Steam, kg/kg of fuel</th>
<th>CO₂ emission, kg/kg of fuel</th>
<th>Specific fuel consumption, kg/MJ</th>
<th>Specific air consumption, kg/MJ</th>
<th>Specific steam yield, kg/MJ</th>
<th>Specific CO₂ emission, kg/MJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>1.7</td>
<td>58.3</td>
<td>9</td>
<td>0</td>
<td>0.0083</td>
<td>0.482</td>
<td>0.074</td>
<td>0.000</td>
</tr>
<tr>
<td>Ethanol</td>
<td>1.55</td>
<td>13.9</td>
<td>1.17</td>
<td>1.91</td>
<td>0.0360</td>
<td>0.500</td>
<td>0.042</td>
<td>0.069</td>
</tr>
<tr>
<td>Methanol</td>
<td>1.5</td>
<td>9.65</td>
<td>1.125</td>
<td>1.375</td>
<td>0.0473</td>
<td>0.457</td>
<td>0.053</td>
<td>0.065</td>
</tr>
<tr>
<td>Gasoline</td>
<td>1.6</td>
<td>24.16</td>
<td>1.44</td>
<td>3.08</td>
<td>0.0227</td>
<td>0.549</td>
<td>0.033</td>
<td>0.070</td>
</tr>
<tr>
<td>Diesel</td>
<td>1.4</td>
<td>21</td>
<td>1.42</td>
<td>3.09</td>
<td>0.0239</td>
<td>0.502</td>
<td>0.034</td>
<td>0.074</td>
</tr>
<tr>
<td>Methane</td>
<td>1.43</td>
<td>24.53</td>
<td>2.25</td>
<td>2.75</td>
<td>0.0204</td>
<td>0.500</td>
<td>0.046</td>
<td>0.056</td>
</tr>
</tbody>
</table>

3. The results of the study

Analysis of the calculation results demonstrates that there is a considerable difference in the environmental impact caused by various fuels used for a combustion engine. Figures 1–4 display absolute and specific characteristics of fuels such as air consumption, carbon dioxide emissions and steam generation at \(\alpha = 1 \) and \(\alpha > 1 \).

It can be seen from Fig. 1 that the absolute free air consumption is the highest for hydrogen and hydrocarbon types of fuels. Combustion at \(\alpha > 1 \) leads to an increase in air combustion for all types of fuel.
However, the difference in the combustion heat (Table 2) leads to the free air consumptions being similar in order to produce similar amounts of energy. The least air consumption is observed for methanol, hydrogen and ethanol. The greatest air consumption is observed for the cases of using gasoline, diesel fuel and methane.

Carbon dioxide emission is the same for $\alpha = 1$ and $\alpha > 1$, both for hydrocarbon fuels and for alcohols. There is no CO$_2$ emission for hydrogen oxidation; small values of carbon dioxide emissions are observed for methane and methanol; and the highest emissions are observed for diesel fuel and gasoline.
Specific steam yield S_{steam} is generated most intensely at $\alpha = 1$. At $\alpha > 1$, the least amount of steam is generated by hydrocarbon fuel and alcohols; and the greatest steam yield is observed for hydrogen fuel.

4. Conclusion

1. The analysis showed that, in an effort to raise the temperature of oxidation of all fuels to the limits defined by the stoichiometric ratio $\alpha = 1$, decreased absolute and specific air consumption increases engine efficiency and reduced fuel consumption for 1 kWh of energy.
2. Actual capacities offered by the state-of-the-art engine engineering are limited with the durability characteristics of structural materials and require increased air consumption.
3. The highest carbon dioxide emission occurs in the case of using the most common fuels, such as diesel fuel and gasoline; and the lowest carbon dioxide emission is observed for hydrogen and alcohol-based synthetic fuels.
4. In terms of reducing greenhouse effect and increasing thermodynamic efficiency of engines, most promising appears development of high-temperature combustion engines operating on hydrogen fuel.
5. For state-of-the-art combustion engine designs, a positive environmental effect can be achieved through the use of hydrogen and alcohol-containing fuel compositions and methane-based gaseous fuels.

Acknowledgments

The paper was prepared with a financial support by the Government of the Russian Federation (Contract No. 02.A03.21.0006).

References

[4] Shchekelein S E and Dubinin A M 2018 Production of liquid fuels based on co-current gas generator and nuclear reactor Atomic energy 124 (2) 76–9
[5] Romanova E D, Romanov I D, Vasilyev V A and Chernyshov E A 2011 The development of technology to produce synthetic and life alternatives fuels Alt. energy and ecology 6 81–3
[10] 1982 *Environmental chemistry* (Moscow: Chemistry)