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Abstract. We investigate an ill-posed Cauchy problem for a linear functional-
differential equation of retarded type on the negative half-line. Using a step-by-step
procedure this problem is replaced by an inverse problem for an operator equation of
the first kind in a functional space. The Tikhonov’s method is then used for finding
solutions. We also construct special boundary value problems for the functional-
differential equations. Solutions of these boundary value problems determine regu-
larized solutions of the ill-posed Cauchy problem by the step-by-step procedure.
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1. Introduction

Let us consider the linear functional-differential equation of retarded type

() dx(1)

0
- J_‘[dw(t’ O(t+s),  re (-0,

where x: (—o0,0] — R". We suppose that the following conditions are valid

(H1) #5(-,s) is a Lebesgue locally integrable function for every fixed
s€[—r,0]; in almost every fixed ¢e(—o0,0] the function #(z,-) has a
bounded variation; Vargc(_,. o 7(t,s), t€(—~0,0], is a Lebesgue locally inte-
grable function.

The Cauchy problem on the positive half-line for a functional-differential
equation is well-studied. There are conditions that provide the continuous
dependence of solutions on the initial functions, i.e. the correctness of the
Cauchy problem [1]. The Cauchy problem on the negative half-line is ill-posed
and is poorly explored. It was investigated in the work [2, 3] in the special
case of a differential equation with one concentrated delay. The method
introduced in [2, 3], however, can be adapted to the functional-differential
equation of retarded type.
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When trying to find a solution of the Cauchy problem for system (1.1) on
the negative half-line by the implicit step-by-step procedure, one needs to solve
the equations

(1.2) Uki1Xr = Xga1,s k< -1,

in a functional space. Here the linear compact operator Ui, acting in the
space C([—r,0],R") is given by the formula [1]

(13) (Ui (0) = Ve(0, —r)xi (0)

-0 r+0
+ J [dSJ V(0,7 — r)g(t —rys — 1)dr| xi (),
—r 0

0e[-r0 (k<-1).

Here

nk(f7ﬁ):n((k+1)r+raﬂ)7 ﬂe[—r,()],
(. B) = n((k +1
Vi(0,7) =V ((k+1)r+0,(k+ 1)r+1), 0,te[-r0 (k<-1)

r+1,—r), B < —r,

and V(t,5), t >s—r, is a matrix solution of equation (1.1) with the initial
conditions

V(ts) =0, s—r<t<s,

V(s,s) =1, s € (—o0,0].

When realizing the step-by-step procedure it is necessary to find the solution
x; (k < —1) of equation (1.2) for the fixed function xzy;. This problem is ill-
posed and for its solution we use the variational method of regularization by
A. N. Tikhonov and the extension of equation (1.2) from the space C([—r,0], R")
to a separable Hilbert space.

Let us introduce the separable Hilbert space H = Ly([—r,0), R") x R" with
inner product and norm

0

<¢,¢>=W<0>«)<o>+j VT Sesds, ol = (p.0) "

—r

We suppose that the following conditions are satisfied

(H2) vrai sup < o0, k<-1.

t,5€(0,r]

a t
aL ne(t—r,s—1)drt
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In the work [6] it is shown that using by (H2) the representation of operator
(1.3) can be written of the form

(1.4) (Uk+1xk)(0) = Vk(g, 7}’))6/((0)

+ JO % (Jﬁr Vi(0. 0)m (2,5 — 7 = V)df) Xic(s)ds,

Oe[-r0] (k<-1),

and this operator allows a continuous extension to A which is a completely
continuous operator.

The variational method was used in the works of A. N. Tikhonov [4] to
find regularized solutions of an integral equation of the first kind in the space of
squared integrable functions L,([—r,0],R"). It was shown that the regularized
solution of the integral equation was a solution of the special boundary value
problem for an integro-differential equation. A. N. Tikhonov used the smooth
stabilizing functionals which generate a metrization of the sets Wj"([—r,0], R")
that majorizes the metric of the space L,([-r,0],R") [4, 5]

The operator Uy, (k < —1) of equation (1.2) is not integral. By taking into
account the representation of this operator, we change the space La([—r,0],R")
on the space H and choose the stabilizing functional of the form

m—1

(1.5) Qx] =Y xUT(0)g;x(0) + JO Xm: xDT(5)Pi(s)x ) (s)ds,
Jj=0 =0

xe Wy ([-r,0,R"), m = 1,

where the notations x©(s) = x(s), xU)(s) = d’/x(s)/ds/, se[-r,0], j=1, are
used. We suppose that the following conditions are satisfied

(H3) Q;, 0<j<m-—1, and Pi(0), 0 e[-r,0], 0 </ <m, are symmetric
positive defined matrices, columns of the matrix-functions Py are elements of
C([-r,0],R"), columns of the matrix-functions P; are elements of the space
wi(-r0,R"), 1 <l <m.

In the variational method of solving the equation (1.2) for fixed positive
values of the regularization parameter o« and for any function x;.| € H, we
define the function x; = xx, € WJ"([—r,0], R") minimizing the functional

M [xpy1, Xi) = (U1 Xk — X1, Ukep1 X — Xie1) + 0 2[xy ] (k< -1).

If there exists the function xj, minimizing the smoothing functional then it
is referred to as a regularized solution of equation (1.2). The value of the
regularizing operator of equation (1.2) for the arbitrary function xy;; € H is
defined by the formula

Riy1(Xpp1,0) = Xpy (K< —1).
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We define the solution of the ill-posed Cauchy problem for system (1.1)
with the initial function ¢ € H on the negative half-line by the implicit step-by-
step procedure

X = Riv1(Xpt1, ), k<1, Xo = .

This procedure defines the sequence xi(-,@,2), k < —1, which can be used
to find the regularized solutions of system (1.1) on the negative half-line by
the formulas x(kr+ 0, ¢, ) = x4(0,0,0), 0€[—r,0), k <—1, x(0,p,0) = p(0),
0e[-r0].

In the present paper it is shown that the regularized solution xi, (kK < —1)
of equation (1.2) is a component of a solution of a special boundary value
problem for the system of functional-differential equations.

Main Theorem. Let the conditions (H1)-(H3) be satisfied and let
Ker Upy1 = {0} (k< —1). Then the solution of the boundary value problem
for the following system of functional-differential equations

(16) 2> 1) B0 0)

o aw
d (? -
S et 05 1) s, =) () — 29 =0,
. 0
1) D [ (2.0 919 - 10)
5 0
1) B0 [l (2.0~ 9] Jals) - 5 0),
0 0
(19 LD [ [ 0.0)(0+5) + | [dne(0.s -0 -l
J—r—0 0

with the boundary conditions

(1.10) (Oxk +fj o B0 @)

+2(=1) = 2(=r) =0,

m o di! :
(1.11) ox(0)+ > (=1 L ((0)x(0)| =0,
j=l+1 do’ 0=0

I1<li<m—1m=>2,
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" oy d! .
(L12) S (=) (0 (0)) =0, 0<lsm-1,
J=1+1 o O=—r

)Zk(o) = Xk(o)a ék(o) - xk+1(0)a Xk(_r) = xk(o), (k =< _1)3

exists and is unique. When m =1, condition (1.11) is absent. The component
X = Xpy (k< —1) coincides with the solution of the wvariation problem of
minimization of the smoothing functional M*.

The component y,, of the solution of the boundary value problem satisfies
the condition i, = Upy1Xky (kK < —1). Here o is the regularization parameter
and xo = ¢ € H is a given function.

2. A boundary value problem for an integro-differential equation

Without loss of generality, we solve the minimization problem of the
smoothing functional for k= —1. Let us introduce new notations x_; = X,
xo =¢, Uy = U. Then the smoothing functional takes the form

2.1)  M7[p,x] = (Ux—9,Ux—9) +0Q[x],  xe W;"([-r,0],R"),

and the operator U is given by the formula
0

(©0(0) = V(0. 1x0)+ | = (ja VOt = 15 == 1) x(5,

0el-r0],peH.

Lemma 1. Let the conditions (H1)—(H3) hold. Then the function minimiz-
ing the smoothing functional (2.1) exists if and only if there exists a solution of
the integro-differential equation

;d

E(Pj(ﬁ)x(/)(e)) = 07 0e [—1’, 0)7

(2.2) U*(Ux—9)(0) + af:(—l)

=0

that can be extended by continuity with its derivatives xV), 1 < j <2m — 1, to the
interval [—r,0] and satisfies the boundary conditions

(2.3) U*(Ux—9)(0)

" OC(QOX(O) + (=) - (P;(0)x"(0))

= do’™"!
gt ‘
2x(0)+ > (-1 1d6""1 (PO (0)| =0,
J=I+1 } 0=0

Il<l<m-1,m=>2,
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. jo-1 47! Nx (o — /
E (-1) yr (Pi(0)x'(0)) =0, 0</<m-—1.
= do 0——r

When m = 1, the second boundary condition is absent. If there exists the solution
x of the boundary value problem (2.2), (2.3), then it belongs to W3"([—r,0],R")
and coincides with the function x, minimizing the smoothing functional (2.1).

Proof. By using the equality
(Ux,y)=(x,U"y), x,yeH,

we find a representation of the adjoint operator U*: H — H. We have

0
(U0 =V OO+ [ VT s.=r) s

d

w0 =5 ([ 7o nT.0de) 0

0 s
d
+ J 70 (J n'(z,0—17—r)V'(s, ‘c)dr) y(s)ds, 0e[-r,0).
_ _
From the representations of the operators U and U™, it follows that equation
(2.2) is an integro-differential equation.
The function x € WJ"([—r,0], R") minimizes the smoothing functional if and
only if the inequality
m—1
M*(x+%,0) = M*(x,p) +2 ((Ux — ., Ux) +a Y x7(0)0;x(0)
=0

+a JO Em: DT (5)P;(s)x) (s)ds> + (UX, Ux) 4 aQ[x]
- j=0

holds for any function x € W,"([—r,0],R"). The necessary and sufficient con-
dition for this is the fulfillment of equality

m—1

(2.4) (U (Ux =), %) + oy £07(0)0;x(0)

0 m
+ ocJ > X7 (5)Py(s)x" ) (s)ds = 0
L5

for any function x e WJ"([-r,0],R").
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By using the integration by parts formula, we obtain

+ (=)™ J MO (TP ()xD())(O)do,  0<j<m—1.
Here the integral operator J is defined by the formula
0
(Jx)(0) = J X(s)ds,  Oe[-r0], xeH.

By using the formulas (2.5), we have

m—1 k
= > %07(0) > (=) IEET©O) (P ()x ())(0)
k=0 j=0

0 m

j O3 1" IBON ()@

J=

Here J° =1 is the identity operator.
Let us introduce the function y(0) = (U*(Ux — ¢))(0), 0 € [-r,0], Y € H,
and simplify the formula of the inner product in equality (2.4)

0
(0.5 =5 OW(0) + | 5 @010

3
|
—_

1

0
(DT 0) + (1) [ FT OO0

=~
i

0



164 Yu. F. DoLGu and P. G. Surkov

As a result equality (2.4) takes the form

M_

( ) () (0) + 205 (0)
+°fZ SR ) <><->><o>>

0 m
+ Jir (az m—j (Jm- ip, () (j)(.))(@) + (—1)'”(.]"5#)(0)) do

Jj=0

+ %7 (0)y(0) = 0.

Since x e W;*([—r,0],R") is arbitrary and because of the definition of the
function iy we obtain

m

(26)  (=)"("U(Ux = 9))(0) + oY (=1)"(J"TP()x1)(-))(0) = 0,

=0
0e[-r0),

27) (D' U(Ux = 9))(0) + 2QixM(0)

+ oczk:(—1)k*f(J’<+1*ij(.)x<f>(-))(0) =0, l<k<m-—1,
j=0

(2.8)  (U"(Ux = 9))(0) + (JU*(Ux = 9))(0) + 2Qox(0) + 2(JPo(-)x(-))(0) = 0,

from the last equality. When m = 1, equality (2.7) is absent. From (2.6)—(2.8)
it follows that the function x minimizing the smoothing functional belongs to
the space W3"([—r,0],R") and satisfies integro-differential equation (2.6) with
the boundary conditions (2.7), (2.8).

If we differentiate m times equality (2.6), we obtain the integro-differential
equation

m

(=D)"(U*(Ux = 9)(0) + o)y (~1)"7(TIP()xV())(0) =0,  Oe[-r0),

J=0
with the boundary conditions
m

Z (=1)" 7 (T *P()xD())(=r) =0, 0<k<m-—1.

Jj=m—k
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Here J~/ is the operator of differentiation

d’y(0)

I ==

, Oe[-r0,1<j<m, ye W, ([-r,0,R").

By taking into account the definition of the function {y we conclude that
the integro-differential equation (2.6) is equivalent to the following boundary
value problem of integro-differential equations

m

U™ (Ux — 9)( +acz

dOJ
- j-1-1 d’"! 0x (g _ / |
Z( 1) ]ll(P()x (0)) =0, 0<li<m-—1.
J=l+1 do O=—r

If we differentiate ¢ times equality (2.6) and suppose that 0 =0, we obtain
(=1)"(I"7)(0 +aZ )" IR (XD ()(©0) =0, 0<j<m-1.

By taking into account the last equalities we bring the boundary conditions (2.7)
and (2.8) to the form in the statement of Lemma 1. O

3. Existence and uniqueness of the boundary value problem for
the integro-differential equation

Let us introduce the unbounded operator L: H — H defined by the
formulas

(L9(0) = Y (-1 (PO @), 0e[-r.0),
=0
m ldjil

with its domain
P(L) = {x:xe W"([-r,0,R"), F'(x) =0, 1 </ <m—1,m=>2,

FF(x)=0,0<!<m-—1},
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which is dense in the space H. Here

£ =0x0) + 3 (-0 L b a)x0 )

j=Tt1 do’"!

)

0=0

1<l<m—-1,m=>2,

m j—1-1 )
=Y (-0 L pox o))

= , 0<l<m-—1.
do’~

O=—r

When m =1, we have Z(L) = {x: xe W}([-r,0],R"), F}(x) = 0}.
By using the definition of the operator L, the boundary value problem for
integro-differential equations can be written in operator form as follows

(3.1) U*(Ux — 9)(0) + a(Lx)(0) =0,  0e[-r0].

Lemma 2. Let conditions (H1)—(H3) hold. Then the unbounded operator
L:2(L) — H is self-adjoint and positive.

Proof. Let us show that the equality

(Lx,y) = (x,Ly),  x,ye2(L),

holds, by using the definition of the adjoint operator [§]. By taking into
account the definitions of the inner product and the operator L, we obtain

y

(Lx,y)=y' (Qox Z )/ dej, L (Pi(0)x7)(0))

m

0 . d] ;
+] ro v oo

By using the integration by parts formula, we have

0 - dj ;
| @2 s 00

ety P o oo
> (=D (Q)dej,, (P;(0)x"(0))
=1 —r
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This equality gives us

0 m >dj .
| s @ 0 moxona

BT
" et -7 gy 4 ‘ ’

=D > (=1 ETg) TR (P;(0)x(0))
=1 = —r

+ JO ¥ (0)Po(0)x(0)d6 + Emj JO (D) (0)P;(0)x(6)do.
. )

r

When m > 2, we reduce the following expression by changing the order of
summation

0

i > (=)L) 4 (P;(0)x'(0))

J
Jj=1 I=1 o’

—r

m—1 m i—1—1 0
jer-1 d’

== >0 > ()

=11
=0 j=I+1 do

(P;(0)x7(0))

—r

m—1 m ji—1—1
( it

j—1—1
=0 j=I+1 do

(P;(0)x7(0))

0=0

As a result, we find
m—1 R . m 0 R R

32 (Lxy)=3 3OO+ [ S0P )0
=0 =0 =

By using the integration by parts formula, we have

jo YT (0)P,(0)x(0)d0
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The latest equality and the equation (3.2) give us

(Lx,y) = yIT(0)0x(0)
=0
m ] 1 dl—l ) ToGD 0
3D (B0) 7 (0) XY (0)
=1 = do -
m 0 di 0 .
#3003 0) 00
j=0 -r
We reduce the expression
Y -4 O (oD (o
DD (D) (B0 T 0)xV N (0)
j=1 I=1 _r
m j=1 lldjflfl _ 0
= e (B0 0) < 0)
j=1 1=0 —r
m—1 m . d‘j -1 - 0
T 5 ;ZH( s (P;(0)y(0)) x"(0)
= 5 »
m i1 di-1 ) . m—1 . 0
- Z( ) — (Pi(0)y(0)) x(0)] =) »7(0)0;x(0)
= do o &

As a result, we obtain the equality

(Lx,y)=< waj )/~ 1;0/, F(Pi(0)y ()"

0 X o dl ‘
# ] Gy s = s, xreat

Thus, the operator L is self-adjoint.
The equality (3.2) and a positive definiteness of the matrices Q;,
j=0,...,m—1, and P;(0), 0 [-r,0], j=0,...,m, lead to

(Lx, x) Z x ZJ P.(0)x7)(0)d0 > 0,

for any xe (L), x # 0. Consequently, the operator L is positive. O
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Lemma 3. Let conditions (H1)-(H3) be satisfied. Then the operator
L' : H — H is bounded and determined by the formula

0
(3.3) (L*Iy)(H) = G(0,0)y(0) + J_ G(0,5)y(s)ds, 0e[-r0],

where

i) G(0,s) = G'(s,0), 0,s€[-r,0];

(i) for a fixed se[-r0], the matrix-function G(6,s), 0 € [—r,0), has
almost everywhere the 2m-th partial derivative which is square integrable on
[—}’, 0);

(i) for a fixed se[-r,0), the discontinuity of the partial derivative
G(g2m_l)(9, s), 0 €[—r,0), in the point 0 =s is determined by the equality

o () o () m
(3:4) 7 (Pu(0)Gy 7 (0,5)) — 1 (Pu(0) Gy (0,5)) = (=1)"L,
o0 0=s+0 a0 0=5—0
here G(Sm)(H, s)=0"G(0,s)/00™,

(iv) for a fixed s e [—r,0], the matrix-function G(0,s), 0 € [-r,0), satisfies

almost everywhere the matrix ordinary differential equation

. / (.]) p—
3.5 E — (Pj(0)G," (0,s)) =0,
(35) - 70_,( (0)Gy7(0.5))

as well as the boundary conditions

*G(0,s)

i (PI0)G (0:5))

(3.6) Ok

= 07
O=—

- j—k—1
0=—0  j=k+1 a0

l1<k<m-—1,m=>2,

(3.7) zm: (=1)77*1 d

e a0’ !

j—k—1

(P(0)G(0,5)] =0,

O0=—r

0<k<m-—1,se[-r0),

when m =1, equality (3.6) is absent;
(v) the matrix-function G(0,0), 0 € [—r,0), is defined by the formula

m -1
(3.8) 6(0.0) = =Y (-1 L (@09P)| 05t
=1 s=—0
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and the matrix G(0,0) is defined by the formula

(39)  G(0,0) = Q" (1,1 - fj(—l)’*‘ﬁmwmé’)(a 0))

)

Proof. Here we use the methods from the work [7]. It is follows from
Lemma 2 that the equation (Lx)(6) = y(#), 6 € [-r,0], has a unique solution
for any function y € H. The representation of this solution x(0) = (L~'y)(0),
0 € [-r,0], takes the form

L3O = GOy + | GOy e[,

The requirement of self-adjointness of the operator L~! is given by the
equality (L7'y,z) = (y,L7'z), y,ze H, from which the expressions for the
coefficients of representation of the operator L~! follow:

G'(s,0) = G(0,s), 0,s€][-r,0), Go(0) = G'(0,0), 0¢€[-r0),
G, (s) = G(0,s), se[-r,0), G, (0) = Gy(0).

Therefore one can conclude that Gy(6) = G(6,0), 6 € [-r,0], where G(0,s) =
G'(s,0), 0,s € [—r,0]. As a result, we obtain formula (3.3) of the operator L.
The existence of 2m-th partial derivative Gézm)(ﬁ, s), Oe[-r,0), se[-r,0],
which is square integrable on [—r,0), follows from the definition Z(L).
For finding the function G we use the equality

LOL_Iyzy, yeH.

This holds when L~!y e Z(L) for y e H. By taking into account the definition
of the set (L), we derive the conditions

*G(0,0) 0 % G(0,s)
(3.10) o (7601‘ . (0) + J,r BT H__()y(s)ds)
m ) aj—k—l .
+ 3 () £ (PU0)G(0,0))]  p(0)
Jj=k+1 o6’ O0=—

m , 0 pi—k-1 .
+Z<—1>f’“j (P0G (0.5)]  y(s)ds =0,

J=kt 1 097!

0=—0

for l<k<m-—1, and
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m L ajfkfl )
Gy 3T s (06 0,0) »(0)
Jj=k+1 O0=—r
m J 0 aj—k—] ) ) ) g
+ > (=1 g1 (005 (0,9))  y(s)ds =0,
—r O=—r

j=k+1

for 0 <k <m—1. The last conditions and the definition of the operator L
yield the equalities
o7

(3.12) f:(—l)j<a—j(P~(0)G(/)(0 0))»(0) + JO P;(0)G (0, 5) (v)dv)
' = og7 N0 \ENIE T apr | S e (T A VSE

a1 o600+ [ 60.950)

Under the conditions of smoothness of the matrix-function G(0,s), 0,s €
[—r,0), in the statement of Lemma 3, equality (3.12) can be written in the form

m

> (-1

J=0

P )6 (0,0)) <0>+m21<—1>fj0 O (PG (0,5)) y(s)ds
o0l o \U,V))Y = ooV o \U,8))Y

0 0 6mfl (m)
+(_1)m@J_‘W(pﬂ,(0)G@ (0.9))y(s)ds = v(0), O [r,0).

For the last integral we obtain

ir o (Pu(0)GY" (0,5)) y(s)ds

o0 . 69’”71
0 6m ) 0 am (m)
:j (Pul(0)G) <0,s>>y<s>ds+j O (Pa(0)G" (0,5)) y(s)ds
30 , 00
6;1171

ot Bal0G(0.5)

6”171 (m)
+ (86”’1 (Pu(0)Gy (0. 5))

) »(0),
s=0+0

0el-r0).
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As a result, we have equality (3.12) in a new form

S L o6 +le V[ 2o .9) 6
j=0 a0’ J= - 60/ o
0 m 0 Am
v (1)"’(Jr%<m<e>c:§"”<e DMrs)is+ [ T PaOG 0.0
e 0| o - O (0)Gy™(0,5)) y<9>)
aomt T T e oo $=0+0
=y(0), 0e[-10),
Therefore we conclude
m ) m 0 aj .
D) = A>G5f><e,0>>y<o>+;;(—1)1J_ﬁ@(e)Gé”(e,s))y(s)ds

m 0 o (m)
D" | S (Pal0)G 0.y

Am—1
am—l (m) " B
o EaOG 0.9)| (D) 1,,) WO =0,  0e[-r0).

For the fulfillment of the last equality for any function y € H, one needs that
the matrix-function G(0,s), 0 € [-r,0), for 0 # s, s € [-r,0), satisfies the matrix
differential equation (3.5), and the discontinuity of its derivative is determined
by formula (3.4). Also the matrix-function G(6,0), 6 € [—r,0), satisfies the
equation

(3.14) zm: (0)G(0,0)) = 0e[-r0).
J=

The conditions (3.10), (3.11) give us that the matrix-function G(6,s),
Oe[-r0), 0+#s, se[-r0), satisfies the boundary conditions (3.6), (3.7),
and the matrix-function G(6,0), 6 € [-r,0), satisfies the boundary conditions
2“G,"(0,0) jok-t
a0*

+ 3 (=) (006 (0,0)] =0,
0=—0 ;S il 0=—0

(3.15) O
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for 1 <k <m-—1, and

(3.16) > (-1 (P(0)G(0,0)) =0, 0<k<m-1,
j=k+1 00 O=—r

aj*kfl

When m = 1, condition (3.15) is absent.

The condition (3.13) gives us the dependencies (3.8) and (3.9).

From the properties of the matrix-function G(0,s), 0€[—r,0), 0 #s,
se€[—r,0), it follows that the matrix function G(6,0), 8 € [—r,0), defined by
formula (3.8) satisfies equation (3.14), and the boundary conditions (3.15), and
(3.16). O

Theorem 1. Let the conditions (H1)—-(H3) be satisfied and let Ker U = {0}.
Then for a positive o the solution of the boundary value problem for the integro-
differential equation (2.2), (2.3) exists, is unique and continuously depends on
pe H.

Proof. Since the operator U* is completely continuous and because of
Lemma 3 it follows that the equation (3.1) is equivalent to the Fredholm
equation of the second kind

LU (Ux — 9)(0) 4 ax(0) =0, 0 e [-r0].
If the homogeneous equation
L'U*Ux+ax =0,

has a nontrivial solution, then one has y = Ux # 0. Here y is a solution of the
equation

UL 'U*y+ay =0.

Since UL™'U* is a self-adjoint positive operator, the eigenvalues are non-
negative. This is a contradiction.

Consequently, for « > 0 there exists a bounded operator (L~'U*U + ol )71.
Then the solution x, of equation (1.6) exists, is unique, continuously depends
on peH, and is determined by the formula x, = (L~'U*U +al) 'L~1U*gp,
@ € H. By taking into account a connection between equation (3.1) and the
boundary value problem (2.2), (2.3), the proof of the theorem is complete.

U

For functional-differential equations conditions implying Ker U = {0} were
investigated in [1].

From Theorem 1 it follows that the regularized solution of the above given
ill-posed problem exits and is unique. It coincides with the solution of the
boundary value problem (2.2)—(2.3) for the integro-differential equation. In the
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next paragraph it is shown that this boundary value problem is equivalent to
the boundary value problem for a system of functional-differential equations.

4. A boundary value problem for a system of functional-differential equations

In the definition of the operator U we use the Cauchy matrix V/, which is
defined implicitly by the functional-differential equation (1.1). When finding
solutions of the ill-posed problem for the differential equation with one
concentrated delay it is shown in the paper [2, 3] that one can replace equation
(3.1) by an equivalent boundary value problem for ordinary differential
equations, with coefficients that can be defined explicitly. It will be shown
below that the boundary value problem for the system of functional-differential
equations arises when finding solutions of the ill-posed problem for the
functional-differential equation.

Lemma 4. Let the conditions (H1) and (H2) be satisfied. Then for the
operator U : W) ([—r,0],R") — W, ([—r,0], R") the following representation holds
(4.1) U=To+T\oT,

where  the  operators Ty : Wy ([-r,0],R") — Wy ([-r,0],R"), Ti:H —
Wi([~r,0],R"), T»: W) ([-r,0],R") — H are determined by the formulas:

(4.2) (Tox)(0) = V (0, —r)x(0), 0e[-r0],

0
(T1x)(6) :J_ V(0,9)x(s)ds,  Oe[-r0],

-0

(sz)(o)zL (05— 0—lx(s),  Oe[-r0),

(T2x)(0) = 0,
Proof. Let us transform the representation (1.4)
-0

V(0,—r)x(0) + [ds JH,, V0, t)n(t,s — 17— }’)d‘L':| x(s)

—r

(Ux)(0)

— V(0,-1x(0) + ar V(0,7 (j (s = 7= (o) ) e

—r

= V(0,-n)x(0) + H, V(0,0 (j_o[dm 5=t = lx(s) e

T

0 e[-r,0], xe W,([-r,0],R").



A Variational Approach towards Solving an Ill-Posed Cauchy Problem 175

The definitions of the operators 7y, 7;, and 7, given in (4.2) imply the
representations (4.1) hold. O

Lemma 5. Let the conditions (H1) and (H2) be satisfied. Then for the
operator U* : H — H we have the following representation

(4.3) U'=T;+ T 0Ty,

where the operators T;:H — H, T;:H— H'=W)([-r,0),R") x R",
Ty : H' — H are determined by the formulas:

(To»)(0) =0,  0e[-r0),

0
(T30 = V70,130 + [ V(5. =3(s)ds

0
(T72)(0) = V7 (0,0)5(0) +j0 VT(s.0)p(s)ds, O [-r,0),

(Tyy)(0) =0,

d (? -
(00 = 55| @051 = a5, -1 sds. 0 l-r0),

(T7)(0) = 0.

Proof. The operator Ty defined by the formula (4.2) admits an extension
To : H — H defined by the same formula. For this extension the equality

0
(Tox, ) = 37 (0)V(0,—r)x(0) + j VT (5) V (5, ~r)dsx(0)
.
=(x,Tyy), x,yeH,
holds, from which we find a representation for the adjoint operator 7;. The
representation for the adjoint operator 7} follows from the equality
0

= (rowen |

y () V (s, H)ds) x(6)do
0

:(X7T1*y)a xay€H~

The codomain of the operator T belongs to the space H' = W, ([~r,0), R") x
R".

When finding a representation for the adjoint operator 7, from the
equality

(Tox,y) = (x, T, y), xe Wzl([—r,O],R”), yeH',
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at first we rewrite the formula

0 -0
15 = [ 7 O)(] s -0 niaio) ) ao
0
= | @00~ 01~ n(o.~)dox(0)

0 0
— J ' (0) L (n(0,s — 0 —r) —n(0,—r)x'(s)dsd0

J,, Jf, (0,5 —0—r) —n(0,-r))d0x'(s)ds
[ i

J (n(s,0 —s—r)—n(0,—r))dsx(0)d0

:(X,Tz*y), xayEHl-

This gives us the representation of the adjoint operator 7. Finally, the use of
representation (4.1) for the operator U implies that formula (4.3) holds. []

According to Theorem 1 we have that for an arbitrary function ¢ € H the
equation (3.1) has a unique solution x = x, € W™ continuously depending on
@. This equation is equivalent to the system

U*(Ux — ¢)(0) + a(Lx)(0) =0, 0€[-r,0),
U*(Ux — ¢)(0) + a(Lx)(0) =0,
Fl(x)=0, Il<s<m-—1, F2(x)=0, 0<s<m—1.

By taking into account representation (4.3) for the operator U* and by introduc-
ing the function y(0) = (Ux)(0), 0 € [-r,0], the last system can be reduced to
the form

LT (x = 9)(0) +2(Lx)(0) =0, 0€[-r,0),
Ty (x = 9)(0) + «(Lx)(0) =0,
Fl(x)=0, l<s<m—-1,  F)x)=0, 0<s<m-— 1.
By introducing the functions
20) = (T70)(0),  2(0) = (T79)(0),  0e[-r0),
200) = (T7x)(=0),  2(0) = (T79)(-0),

we have the last system of equations in the form
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(4.4) Ty (x —2)(0) + a(Lx)(0) = 0, 0e[-r0),
(4.5) Ty (x = 9)(0) + a(Lx)(0) = 0,
46) Fl(x)=0, l<s<m—1, F}x)=0, 0<s<m-—1.

We proceed to the proof of the Main Theorem, where the index k is
omitted in the statement and in the proof.

Proof of the Main Theorem. By taking into account the definitions of the
operators T and L, we rewrite equation (4.4) in the implicit form (1.6).
From the definition of the function y we have

0
7(0) = V7 (0,0)1(0) + L VTEOxOde,  0el-r,0).

This equation is equivalent to the differential equation

dz(0) _ oV (0,0) "oV 0)
@) LR -0 -0+ | T Paede el
with the boundary condition
1(=0) = %(0).
The Cauchy matrix V satisfies the integral equation [1]
¢
V(EO) = I J V(E (s, 0—s)ds, —r<0<&<O.
0

The condition #(0,0) =0, 6§ € [—r,0), gives us that

V(£ 0)

= [l @OV 6y, —r=0sc<o
a0 )

Consequently, we have

T 0 T
Lo+ | oD e
0 0 ¢
— | [T (20— )1, VT (0.5)2(0) + J j A" (2,0 — )|, VT (&, 5)2(E)dé
0 0Jo

0

0
R (J VT (E e + VT(O,s>x(0>)
0

s

0
= H[dsﬂT(T,O—S)L:S}}?(S), 0e [—V, 0)

As a result, equation (4.7) takes the form (1.7).
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Similarly, from the definition of the function Z we find that it satisfies the
differential equation (1.8) with the boundary condition

2(=0) = ¢(0).
The definition of the function y leads to

0
2(0) = V(0,—r)x(0) + J, V(0,8)x(&)dé, 0e[-r0).

The previous equation is equivalent to the differential equation

dy(0) _aov(0,—r) . JeﬁVW£)A
(4.8) 0" %0 x(0) + x(0) + 0 x(&)de, 0€e[-r0),
with the boundary condition
x(=r) = x(0)
The Cauchy matrix V' satisfies the differential equation [1]
v (o 0
D[ oo +59
do _
0
| nosverse,  —r<c<o<o
&-6

By taking into account these equations we rewrite the equation (4.8) in the form

0

0
)+ | lan@9) | vo+s. s

0
= d}é—(og) - Jirio[dsn(e, S)} V(0 + 5, —r)x(())7 9[_',7 0)

Let us reduce the previous equation to the form

0 O+s
50 + | [mmam(J VW+&€W@M§+VW+&—HMW)

—r—0 —r

_dx(0)
== 0el-r0).

So equation (1.8) and the definition of the function x give us (1.9).
Let us find the implicit form of the boundary condition (4.5). We have

0
5= )0 = V70,120 = p(0) + | V(& =1)(x(€) ~ p(&))ee

= T{ (1 = 9)(=1) = 2(~r) — £(=).
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Consequently, the boundary condition (4.5) coincides with (1.10) and the
boundary conditions (4.6) coincide with conditions (1.11), (1.12). The re-
maining boundary conditions appear by changing the integral equations to the
differential equations.

The equivalence of the boundary value problem for integro-differential
equation to the boundary value problem for a system of functional-differential
equations and Theorem 1 leads to the existence and uniqueness of solution of
the boundary value problem (1.6)—(1.12). O

5. Application

The boundary value problem (1.6)-(1.12) for the functional-differential
equation of the general form (1.1) has a complicated structure. This bound-
ary value problem can be simplified for differential equations with multiple
delays.

Example 1. Let us consider the nonautonomous differential equation with
some constant delays
dx(t) &
(5.1) WZZAJ(OX(Z—TJ)» 1€ (—00,0],
=0

where x: (—0,0] = R", 0=19<7; <--- <71, =7, det Ay(t) #0 for t € (—o0,0],
p€N. The stabilizing functional is defined by the formula (1.5) and m = 1.
The equation (5.1) is equivalent to (1.1) when

77([7 S) = I(,rm,.[/)(S)A/(l), 77(17 _Tp) = ZA‘i(t)v

P
J=0

S

.
Il
[==}

-7, <8§<0, te(—00,0],

where Ig(-) is an indicator of the set E.

Then the statement of the Main Theorem holds. The boundary value
problem (1.6)—(1.12) is equivalent to the system of differential equation with
deviating arguments

52 gy (POZET) =amomo
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dy, (0 2 )
D) S 1 OO+ )70+ )~ 10,
=0
dz (0 2 )
;<(9 Do S OAL0+ 9)2(0+5) — 3 (0),
7=0
dy (0) &
= X0 (D) Ax(0)1(0 — 7))
o~
P
+ Z I(—r,,Jj—rp)(G)Ajk(e)xk(g +7 - Tj)’
=1

with boundary conditions

(5.3)  a(Qoxk(0) + P1(0)x(0)) + 7 (=7p) — Zk(=7,) =0, x3(=7,) =0,
71(0) = x4 (0), 2k(0) = xi41(0), 1 (=7p) = xi(0).

Here xo = ¢ € H is a given function and 4; (0) = 4;((k + 1)t, + 0), 0 € [-1,,0],
0<j<p, k<-1

The deviations of the arguments have different signs in the obtained
system of differential equations. Numerical integration of these equations is
a difficult problem, some approaches to its solution are considered in the works
[9, 11]. The presence of a small parameter at the highest derivative requires a
special numerical method.

Example 2. Let us consider a problem of numerical finding regularized
solutions of equation (5.1) for p=2, 71 =7>0, and 7, =27, on the finite
interval [—K71,,0], K € N, for a given value of the regularization parameter o

and for a given initial function p € H. We assume that vrai  sup |A4x(f)| < o0.
[E[*K‘EZ‘O]

For solving the boundary value problem (5.2), (5.3) we use the non-uniform

mesh, the choice of which does not depend on k, —K <k < —1. The system

of differential equations (5.2) is replaced by the following system of difference

equations
Xt = P (9) vi + i
it = hi(Po(8)xi + o H(i = N) AL (9n) (2 = 27Y)
+ o Ay (3) (T — 2) + i

2 = —hi(Ag (97 + HIN = DAL Sun)Zi ™ + 20 + 2k
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g = —hi(Ag (92 + H(N = DAL (3iew) 20 + X)) + 2,
1 = hi(Aok(9)xh + H(i — N) Ay (9)xN + H(N — i) A1 (%) x ™
+ A ()X + b, i=0,...,2N —1,

where H(-) is the Heavyside step function, ;= 9;41 — %, 0 <i <2N — 1, and
% (0<i<2N) is the mesh points of the interval [—75,0]. The boundary
conditions (5.3) take the form

a(Qoxt™ + PPV yN) + a0 —20 =0, L =0,

~2N 2N 22N 2N 0 2N
X =Xk > Zi = Xt X = Xk -K<k<-1.

By using the methods of the work [12] we define the points of non-uniform
mesh by the formulas

—2t—a'2e1 7 In(1 — (1 — N~1)4i/N), i=0,...,N/4,
Ji=q —t+7, +p(i—N/4), i=N/4,...,N/2,
—t4 a2 In(1 = (1 = N~")2(N —i)/N), i=N/2,...,N,

and & =3 _ny+7 for N+1<i<2N. Here y, = —T+a]/261ﬁ_1 InN, p, =
—a'26,)p' In N, and p=4(y,—y,)/N, where B, o, and o, >0 are some
constants.

1.0

0.5

-3.0 2.5 -2.0 -1.5 -1.0 -0.5

-0.5

Fig. 1. Regularized solutions of equation (5.4) on [-3,—1] for & =10"% and ¢(#) = sin(6) + 1
0e[-1,0].

>
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Let us consider the scalar equation
(5.4) x'(t) = x(1) + tx(t — 1/2) + exp(—1)x(¢ — 1),

with a given initial function ¢(0) =sin(0) +1, Oe[—1,0]. The stabilizing
functional is defined by the formulas (1.5) for m=1, Qy =1, P;(0) =1 and
Py(0) =3, 0e[-1,0]. We will construct the regularized solution of equation
(5.4) on the interval [-3,—1].

The equation (5.4) coincides with (5.1) when p=2, 71 =05, 7, =1,
Ao(t) =1, A1(t) =t and A,(¢) =exp(—t), -3 <t <0.

We choose the mesh parameters as follows N = 256, f = exp(—5), a1 = 3f
and g, = 128, and choose the value of the regularization parameter o = 107°.
Then we find y; = —0.983, y, = —0.0665, p = 0.0143.

The results of calculations are presented in fig. 1.
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