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Abstract. The formation of the two: injected and thermally excited, different in energies magnon
subsystems and the influence of its interaction with phonons and between on drag effect under spin
Seebeck effect conditions in the magnetic insulator part of the metal/ferromagnetic insulator/metal
structure is studied. The analysis of the macroscopic momentum balance equations of the systems
of interest conducted for different ratios of the drift velocities of the magnon and phonon currents
show that the injected magnons relaxation on the thermal ones is possible to be dominant over
its relaxation on phonons. This interaction will be the defining in the forming of the temperature
dependence of the spin-wave current under spin Seebeck effect conditions, and inelastic part of the
magnon-magnon interaction is the dominant spin relaxation mechanism.

1 Introduction

Recently, a great deal of attention is devoted to the
investigation of thermally excited magnons, particu-
larly in studies of the spin Seebeck effect (SSE) in
Pt/YIG/Pt structures. The propagation of magnons
in a magnetic insulator is described by two charac-
teristic quantities: mean free path and spin diffusion
length that are governed, in turn, by various magnon
relaxation mechanisms. A series of experiments deter-
mine the range of the diffusion lengths as being quite
wide: from 4pm to 120um [1-5]. To explain so large
values of the spin diffusion lengths, the number of pa-
pers has put forward several concepts of appearance,
along with thermal magnons, of long-wave subther-
mal magnons in a magnetic insulator. For interpret-
ing the experimental results, the works [4, 5] have
adopted the hypothesis of the existence of the two
magnon subsystems with different energies: thermal
and subthermal magnons in a magnetic insulator. As
to the temperature dependence of the Seebeck coeffi-
cient, it is non-monotonic and reaches its maximum
within the range of 50 - 100K. And as the investiga-
tions have shown, it is affected by strength of a mag-
netic field, dimensions of the samples, and quality of
the interface [5]. To explain the low temperature en-
hancement proposed the phonon-drag SSE scenario
based on a theoretical model [6-8]. However, the ob-
served transport of magnons over a long distance of
up to millimeters in magnetic insulators implies a rel-
ative weak interaction with phonons and impurities,

and the measurements of the temperature dependent
thermal conductance of YIG single crystals show that
the phonon contribution to the thermal conductivity
reaches its maximum at around 25 K, which is 50 K
lower than the observed peak in the SSE.

We have developed an "enhanced model" of the
spin current and drag effect, which is based on the
formation of two interacting magnon flows. Indeed,
when SSE occurs in such structures, there are two
magnon groups with different energies. The first
group consists of magnons produced by an inhomo-
geneous temperature field applied to the magnetic
insulator- "thermal" magnons. The energy of the
magnons is of the order of a temperature (kgT).
Along with them, there are the magnons injected into
the magnetic insulator due to inelastic scattering of
spin-polarized electrons of the metal by localized spins
located in the vicinity of the interface. The energy of
the "injected" magnons is of the order of spin accu-
mulation energy of conduction electrons of the metal
Ag > kpT. Thus, it can be said that the mag-
netic system of the insulator forms another subsys-
tem of "injected" magnons that are actually respon-
sible for the SSE. As a consequence, in the presence
of a non-uniform temperature field, there are three
flows inside the magnetic insulator, namely, phonon
and two magnon ones. The evolution of the magnon
and phonon subsystems to equilibrium occurs due to
the relaxation of both their energy and their moment.
Obviously, the interaction between the flows gives rise
to the drag effect.
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2 Macroscopic momentum balance
equations

Under the influence of a non-uniform temperature
field (a temperature gradient) applied to the sys-
tem, the magnons and phonons begin travelling; their
macroscopic drift affects the propagation of the spin-
wave current. The problem to be solved reduces to
constructing and analyzing a set of macroscopic mo-
mentum balance equations for the magnon (i = 1,2)
and phonon (i = p) subsystems. To derive the macro-
scopic equations

(Pi))' = Sp{Px) p(0)}, i = mi,ma,p), (1)

The expression for the non-equilibrium statistical op-
erator (NSO) needs to be sought. According to [9],
for p(t), in the linear approximation in deviation from
equilibrium, we have:

p(t /dt' et! ”L/drp (t+t)py " po-

(2)
S(t) = 0S(t)/dt + (ih)~'[S(t), H] is the entropy pro-
duction operator. e*lA = e #H/h gtH/M 50 —
exp{—So}. So is the entropy operator for the equilib-
rium system. Thus, the problem boils down to finding
the entropy production operator. We can write the
entropy operator as

/ dr{ B, (v, ) [Hom, (v)+ Hppym, (v)+

+ Hinym; (v)] = B, (v, ) N, (r) +
+ Bp(r, ) [Hp (r) + Hypp(r)+ Hpm, (r)] -
7/8”7741' (I‘, t)Vmi (I‘, t)Pmi (rHﬂP (I‘, t)vp (I‘, t)PP (I‘)} (3)

Here

L (v)=lIn,, () +1p, (r) Vi, ()],

L) =11, () + Vi) I (1)
the density flows of the energy and momentum
magnons and phonons. We also have taken into ac-
count that V (Bk(r,t)Vi(r,t)) ~ Vi (t)V Bk (r,t). Here
Bm, (r,t) are local-equilibrium values of the inverse
temperatures of the magnon (¢ = 1,2) and phonon
subsystems Bp(r,t).  fm,(r,t) is a local equilib-
rium value of the chemical potential of the magnons.
N(r) = Ny, (r) + Ny, (r) is the magnon number den-
sity operator. Vi,,, V, are the drift velocities of the
magnons (¢ = 1,2) and the phonons respectively.
Inserting the entropy production operator (3) into
the expression for the NSO (2), we average the op-
erator equations (1) for momenta of the subsystems

under discussion. Then we have

(P ()

+ L(mhmlp) (r, r, t/) Vi, ,p(I"i)Jr
+ L(m11m1m2)(r7r/7t/) 5Vm1,m2 (I‘/,E)}, (4)

0
Y = [t i 5D () Vit (B

0
<Pm2 (r) :*/dtl eetﬁrlﬁ{Dwumz (51" t") Vi (x, D1
+ L(mz,mzp) (I‘, rla tl) 5Vm2,p(r,7 E)"‘
+ L(mQ,Tn1m2)(r7r17tl) 6Vm2,’m1 (rlvt_)}7 (5)

here t = ¢t +#'. The first summands in the right-hand
side of (4), (5) describe magnon-diffusion processes
due to inhomogenius magnon chemical potential. The
last two - magnon-phonon and "thermal" - "coherent"
magnons scattering respectively

r)> Z—/Odt' d/dr B{=Dpp(x,x',t") VB, (r', -

+ L(p,mlp) (I‘, rl’ tl) 5‘/;),7711 (rla E)—’—
+ L(p,mzp) (I‘ I‘l tl) 5‘/}, ma (I‘l f)—l—
+ Lippp) (r, 7', 1)V, (r D)} (6)

The expression (6 ) describes the diffusive processes,
processes of non-magnon relaxation of phonons and
the magnon-phonon scattering. Here we introduce
the notations: Vi, = Vi — Vi, Dpp(rr')t/) =
B(VIp, (r),I;(r’,t’)) and

1

(A.B) = [ drspla) AB o).
0

The momentum balance equations allow conducting
the analysis of how the interaction between the sub-
systems at hand affects the implementation of the
drag effect. We introduce the average values of the
forces induced by the chemical potential and temper-
ature gradients

0
= /dt’ ed//dr’ Doy, (515 ) Vi, (', 1),
—00

0
= /dt’ eﬁt’/dr’Dpp(r,r’,t’) VB, (r',1).

Besides, introduce the inverse times of the magnon
and phonon momentum relaxation caused by inter-
action with phonons processes of non-magnon relax-
ation of phonons. Let us designate them as w(),
and wpy), respectively [9]

0
W(yw) = (P% P7)71 / dt’ ed (P('y,v)a P('y,v)(t/))a
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v = my,ma, p. We restrict ourselves to the discussion
of a stationary case. For this purpose, we average the
balance equations over time ¢. To start the analysis,
we consider the simplest case when the drift velocities
of the magnon systems are equal: V,,, = V,,, =V},
and B, = Pm,. The balance equation for the magnon
momentum acquires the form

Fon = Vip P22l 2nmn)_ 90 (7)
W(m,mp) T @(p,pp)
where P,, = (Pp,Pn), P, = (Pp,P,). Finally,

the dragging leads to the change in frequency of the
magnon-phonon collisions, and the quantity 2 is the
inverse relaxation time of the magnon momentum by
non-equilibrium phonons. From the expression (7) it
follows that the drag effect has an influence on the
magnon-phonon collision frequency. The criterion of
realizing the drag effect consists in the requirement
W(m,mp) > Wp,pp) that coincides with the solution of
the kinetic equation [10].

Another limiting case corresponds to the situa-
tion when the drift velocities of thermal magnons and
phonons are equal to V,,, =V, and (B, = 5,). In
this case, thermal magnons and phonons form one
subsystem. From balance equations we obtain

E, = v, e [Wp,mp) + @ mmima)] ®)

W(p,mp) + W(p,pp)

From the expression (8) it follows that if w, ,,) >
W(p,mp) then Fy ~ W(p,mp) and Fy ~ W(m,mima)
if Wpmp) <K Wim,mims). If the opposite inequal-
ity, when W(p,pp) < W(p,mp) then F7 ~ W(p,pp) []. +
Wiom,mims) [ (pmp) | a0d F1 ~ @(p pp) I W, myma) <
Wpmp) Ad 1~ W pp) Win,mims) /W (pmp) When
W(m,mymz) > W(p,mp)-

Now we look into the drag effect in the event of
two magnon and one phonon systems. Then, the mo-
mentum balance equations can be written as follows.
The set of the equations (5), (6) implies

W(imy,mp)¥(mi,m
lez{W(ml,mp)'i'w(m,mlmz)_ (ms Pi)( 1,mp) }le

_ { W(ma,mp)W(m2,mp)

Q +w(m’m1m2)}'
) Fm2 +(W(m,m1m2) +w(m1,mp)w(m2,mp)/Q)Vm1

W(ma,mp) TW(m,mims) —W(ms,mp)W(ma,mp) /¥

(9)

where € = Wi, ,mp) + W(ma,mp) + W(p.pp)-
Let the energy transfer channels from the magnon
subsystems to the phonon subsystem be equal

Wimy,mp) = Wima,mp) = Wimmp), Vmy = Vin. In this
case we have

le = {w(m,mp)+w(m,m1m2) _w(m,mp)/Q}Vm
—{Wm,mp) [+ Wi mima) } X
« Fm2 +(W(m,m1m2) +w(m,mp)/Q)Vm

W(m,mp) TW(m,mima) =W (m,mp)/ 2

13
(10)

Here Q = 2 + W(p,pp) /w(m,mp)' If W(p,pp) > W(m,mp)>
then

Fony ={W(m,mp) F@W(m,mims) }Vin—
sz +w(m,m1m2)

Y.(11)

W(m,mimsz) {W(m,mp)+w(m,m1m2)
The expression (11) claims that the spin-wave current
~ F7y is determined by the relations between the corre-
lation functions W, m,my) aNd Wiy mp). As it follows
from the expression (11) that if Wi m,ma) KW im,mp)
then Fi ~ wW(p mp)- In this case magnon-phonon in-
teraction is the dominant channel of a magnon relax-
ation. If we have the opposite inequality Wi, mms) >
Wim,mp) then F1 ~ Wy m,m,). In this case the inter-
action between "injected" and "thermal" magnons
is the dominant channel of a magnon relaxation.
Moreover, the inelastic scattering of the "injected"
magnons by "thermal" ones can be regarded as scat-
tering by impurity centers whose concentration is
temperature-varied. This interaction will determine
the temperature-field behavior of the spin-wave cur-
rent under the conditions of the Seebeck spin effect.

Conclusion. The analysis of the macroscopic mo-
mentum balance equations of the systems of interest
conducted for different ratios of the drift velocities of
the magnon and phonon currents show that the "in-
jected" magnons relaxation on the "thermal" ones
is possible to be dominant over its relaxation on the
phonons. This interaction will be the defining in the
forming of the temperature dependence of the spin-
wave current under SSE conditions, and inelastic part
of the magnon-magnon interaction is the dominant
spin relaxation mechanism.
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