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Abstract. Solutions of nonlinear partial differential equations with a small parameter are constructed as a sum of truncated Fourier
series and some additional function. The coefficients of the truncated Fourier series depend on the small parameter and satisfy a
nonlinear system of ordinary differential equations, which in turn is determined by nonlinear partial differential equation. A certain
class of equations describing nonlinear oscillations was determined, for which the coefficients of the truncated Fourier series are
bounded functions of time. This fact makes it possible to estimate the additional function and to justify the applicability of the
Fourier method for the constructed class of nonlinear partial differential equations.

INTRODUCTION

We consider the initial boundary value problem for one class of nonlinear partial differential equations with two
independent variables x and t and a small parameter ε. We seek a solution in the form of the truncated Fourier series
and an additional function that is represented as a power series of ε. If we represent the solution of a nonlinear equation
as an infinite Fourier series, we have to determine the coefficients of the series as a solution of the countable system
of ordinary differential equations which, in general, can not be integrated successively. Following [1], along with the
countable system which is reduced to the standard form:

dxk

dt
= εFk(t, x1, x2, . . .), k = 1, 2, . . . ,

we consder the ”truncated” system

dxk

dt
= εFk(t, x1, . . . , xn, 0, . . .), k = 1, n,

that is obtained from the initial one if we put the functions to be obtained equal to zero, starting from the (n + 1)-th
function and discarding all the equations, starting with (n + 1)-th equation. In [1] Persidskii proves a theorem which,
under some assumptions as to the functions Fk, implies that the solution of the ”truncated” system approximates with
the preassigned accuracy the solution of the original system in a time interval if n is sufficiently large. However, the
assumptions of this theorem are quite restricted.

In this work we describe a class of nonlinear equations for which we can establish the coefficients of the truncated
Fourier series are bounded for all t ≥ 0. This statement allows us to estimate an additional function v and to prove that
the constructed series converges to the solution of the initial boundary value problems in time interval 0 ≤ t ≤ ε−1.

PROBLEM SATEMENT AND CONSTRUCTING THE SOLUTION

We consider the initial boundary value problem for the equation

utt + (−1)n ∂
2nu
∂x2n = ε f (x, u, . . . ,

∂mu
∂xm ), m ≤ n + 1 (1)
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with the initial data
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 ≤ x ≤ 1 (2)

and the boundary conditions

u(0, t) = u(1, t) = 0, t ≥ 0,

∂2 ju(0, t)
∂x2 j =

∂2 ju(1, t)
∂x2 j = 0, j = 1, . . . , n − 1 (n ≥ 2).

(3)

Here ε is a small parameter, f is a nonlinear continuous function of its arguments, witch satisfies the condition:
if for any k ≥ 1 we set

u =

k∑

s=1

zsXs(x), Xs(x) = sin πsx,

the function f may be represented as

f =

mk∑

s=1

Ps(z1, . . . , zk)Xs(x), (4)

where Ps(z1, . . . , zk) are polynomials in z1, . . . , zk, and the numbers mk ≥ 1. For example, if f = uux, then mk = 2k.
The problem (1)–(3) arises in investigation of vibration processes in many real objects [2], for example, the

problems on transverse vibrations of a string with fixed ends (n = 1), bending vibrations of a beam (n = 2) with
nonlinear effects. The questions of the existence of a classical solution of nonlinear equations are considered in many
works (e.g. [3], [4]).

Let the initial conditions have the form

uν(x) =

J∑

j=1

αν jX j(x), ν = 0, 1. (5)

Here αν j are constants. We construct the solution (1)–(3) in the form:

u(x, t) =

N∑

s=1

zs(ε, t)Xs(x) + v(ε, t, x,N), (6)

where N ≥ J. If we substitute (6) into (1), take into account the assumptions (4), (5) and equate the expressions at the
same Xs(x), s = 1,N, we obtain the system of nonlinear differential equations for the coefficients zs(ε, t)

z′′i = −ω2n
i zi + εPi(z1, . . . , zN), ωi = πi,

z′i(0) = α1i, zi(0) = α0i, i = 1,N.
(7)

In the following this system is called the leading system.
Function v(ε, t, x,N) satisfies an equation of type (1)

vtt+(−1)n ∂
2nv
∂x2n =ε[ f (x, v, . . .,

∂mv
∂xm )+ f1(x, v, . . .,

∂mv
∂xm )+

m1∑

s=N+1

Ps(z1, . . ., zN)Xs(x)], (8)

but with the zero initial and boundary conditions

v(x, 0) = vt(x, 0) = 0,

v(0, t) = v(1, t) = 0, t ≥ 0,

∂2 jv(0, t)
∂x2 j =

∂2 jv(1, t)
∂x2 j = 0, j = 1, n − 1.

(9)
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Here function f1 is determined by nonlinear function f and a number N in (6).
We construct the solution of the initial-boundary value problem (8)–(9) in the form of a power series of ε

v(x, t) =

∞∑

i=1

εivi(x, t, ε). (10)

Here the functions vi depend on ε, since the functions z j, j = 1,N, witch are a solution of the leading system (7) also
depend on ε.

If we substitute (10) into (8), we obtain the linear non-uniform partial equations for the functions vi(x, t, ε)

∂2vi

∂t2 + (−1)n ∂
2nvi

∂x2n = Fi(t, x, v1, . . . , vi−1) (11)

with the zero initial and boundary conditions

vi(x, 0) =
∂vi(x, 0)

∂t
= 0,

vi(0, t) = vi(1, t) = 0, t ≥ 0,

∂2 jvi(0, t)
∂x2 j =

∂2 jvi(1, t)
∂x2 j = 0, j = 1, n − 1, i ≥ 1.

(12)

For i = 1 we have

F1 =

m1∑

j=N+1

P j(z1, . . . , zN)X j.

Since function f satisfies (4), we may construct the solution of the problem (11), (12) in the form of the sums

vi =

mi∑

j=1

qi j(t, ε)X j, i ≥ 1,

where mi = [(r f − 1)i + 1]N + N0, r f is the degree of the polynomials Ps(z1, . . . , zN), the number N0 ≥ 0 is determined
by the function f , and the coefficients qi j are determined successively as solutions of linear ordinary equations.

Thus, we can rewrite the solution of the original problem (1)–(3) in the form of a series

u(x, t) =

N∑

i=1

zi(ε, t)Xi +

∞∑

i=1

εi
mi∑

j=1

qi j(t, ε)X j. (13)

We can represent the solution of the equation (1) also in the form of a series by powers of specially chosen
functions, using the method of special series [5, 6, 7, 8, 9]. The method of special series, in contrast to Fourier
method for nonlinear partial differential equations, makes it possible to find the coefficients of these series recurrently.
Special series are also used to obtain solutions in bounded domains for solving the initial-boundary value problems
[10, 11, 12, 13].

PROPERTIES OF P-SYSTEMS

In [14] it is shown that if the following relations hold for the right-hand sides Pi(z1, . . . , zN)

∂Pi

∂zk
=
∂Pk

∂zi
, k, i = 1,N (14)

then a positive definite Lyapunov function for the system (7) exists in the form

VN =
1
2

N∑

i=1

(ż2
i + ω2n

i z2
i ) − εQN(z1, . . . , zN), (15)
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which the time-derivative along the trajectories of the system (7) is zero
(

dVN

dt

)

(7)
= 0. (16)

Here function QN(z1, . . . , zN) has continuous partial derivatives ∂QN/∂zi, i = 1,N, QN(0, . . . , 0) = 0 and may be
represented as

QN =

N∑

i=1

zi∫

0

P[1,...,i−1]
i (z1, . . . , zN)dzi,

where by P[1,...,i−1]
i (z1, . . ., zN) we denote the right-hand sides of (7) with z j=0, j=1, i−1.

Definition. If the equalities (14) are valid for the leading system (7) corresponding to function f (x, u, . . . ,
∂mu
∂xm ),

then such system is called P-system.

Example of P-system. We consider the nonlinear wave equation, which describes nonlinear vibrations of a string
with fixed ends

utt=uxx(1 + εux), (17)

u(x, 0) = sin πx, ut(x, 0) = 0, (18)

u(0, t) = u(1, t) = 0, t ≥ 0. (19)

The corresponding leading system (7) for equation (17) has the form

z′′i =−ω2
i zi+0.5επ3Pi(z1, . . ., zN), ωi=πi, (20)

with the initial conditions
z′i(0)=0, i=1,N, z1(0)=1, zk(0)=0, k=2,N,

where
Pi = −

(∑

s+l=i

sl2zszl + i
∑

l−s=i

slzszl

)
.

The equalities (14) are valid for the leading system (20) corresponding to function f = uxxux and the leading
system (20) is P-system.

For this P-system the positive definite Lyapunov function exists for any N in the form

VN =
1
2

N∑

i=1

(ż2
i + ω2n

i z2
i ) − εQN(z1, . . . , zN),

which the time-derivative along the trajectories of the system (20) is zero. Here the function QN is represented in the
form

QN=
π3

2

N∑

i=2

∑

k≤i/2

k(i−k)
{
i− i

2

[
sign

(k
i
−1

2

)
+1

]}
zkzizi−k.

We can also construct a solution of the problem (17)–(19) in the form of a special series [13, 15, 16]

u(x, t) =

∞∑

i, j=0

gi j(t)Pi(x)Q j(x)

with special functions P(x), Q(x). In order to exactly satisfy the boundary conditions, it was sufficient to require that
these functions satisfy the differential system of equations

P′ =
∑

m+2n≤l−1

am,2n+1PmQ2n+1,
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Q′ =
∑

m+2n≤l

bm,2nPmQ2n,

where am,2n+1, bm,2n =const. In particular, a pair of functions P(x) = cos πx and Q(x) = sin πx satisfy these conditions.
For these functions we have the differential system of equations

P′ = −πQ(P2 + Q2),

Q′ = πP(P2 + Q2).
(21)

Thus, the solution of the problem (17)–(19) is representable in the form of the series

u(x, t) =

∞∑

i, j=0

gi j(t) sini π cos j πx. (22)

It is necessary to use differential relations (21) for the recurrently calculation of the coefficients of series (22).

JUSTIFICATION OF APPLICABILITY OF FOURIER METHOD FOR SOME CLASS
OF EQUATIONS

We describe a some class of nonlinear partial differential equations (1), for which the applicability of the Fourier
method can be justified. For this class of equations, the corresponding leading systems (7) are P-systems.

The following lemmas are valid.

Lemma 1. Let f1(x, u, . . . ,
∂mu
∂xm ) and f2(x, u, . . . ,

∂mu
∂xm ) are P-functions.

Then f = α1 f1 + α2 f2, where α1, α2 = const is a P-function.

Lemma 2. For any natural number l ≥ 1 functon f = α1u2 sin lx + α2u3 cos lx is a P-function.

Lemma 3. For any natural number l ≥ 1 functon f = ul
xuxx is a P-function.

The following theorems are valid.

Theorem 1. Let nonlinear function f is a polynomial of the form

f =

K∑

k=1

[ak(x)u2k + bk(x)u2k+1 + ck(uk
x)x + dk(u2k+1

xx )xx,

here ak(x) are the continuous even functions, bk(x) are the continuous odd functions, ck, dk are constant.
Then the corresponding leading systems (7) is a P-system.

Theorem 2. Let the conditions of Theorem 1 are satisfied for function f , the initial data ανi satisfy the conditions

|α0i|≤ M

ω2(n+1)
i

, |α1i|≤ M
i2+n , i=1,N, M≥0

and
|ak(x)|+|bk(x)|+|ck |+|dk |≤M1, M1 ≥ 0.

Then the solutions of the corresponding leading systems (7) are bounded for all t ≥ 0 when |ε|≤ε0( f , M1).

If we use the first Lyapunov stability theorem [17], we can prove that the existence of the function (15) with
property (16) is sufficient for the solutions of the leading system to be bounded for all t ≥ 0. To prove the Theorem 2
it is sufficiently to check the relations (14). We can estimate the functions zi, if |ε|≤ε0( f , M1)

|zi| ≤ M

ω2(n+1)
i

, |żi| ≤ M
i2+n , i = 1,N, t ≥ 0. (23)
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Theorem 3. Let the conditions of Theorem 2 are satisfied.
Then series (13) uniformly converges to the solution of the initial-boundary value problem for all 0 ≤ x ≤ 1 and

0 ≤ t ≤ T (T ∼ ε−1).

If we use the method of mathematical induction and (23), we can estimate the functions qi j as follows

|qi j| ≤ Miti

N2i2ω2(n+1)
j

, i ≥ 1, j = 1,mi. (24)

The estimates (23), (24) allow us to prove that the series (13) converges to the solution of the initial-boundary
value problem (1)–(3) for all 0 ≤ x ≤ 1 and 0 ≤ t ≤ T (T = (Mε)−1).

Remark 1. The additional function v is estimated as follows

|v(ε, t, x,N)| ≤ 1
N2 εt

( 1
N2(n−1) + εt

)
C, C = Const. (25)

Remark 2. In contrast to [14] in this work a class of nonlinear equations for which the solutions of leading
system are bounded for all t ≥ 0 is more completely described.

Remark 3. Small parameter ε0 is independent on N, and the estimates (25) allow us to prove that the additional
function v tends to zero when N is increasing.

CONCLUSION

Thus for the defined class of nonlinear equations in Theorem 1 the applicability of Fourier method is justified for all
0 ≤ x ≤ 1 and 0 ≤ t ≤ T (T ∼ ε−1). We can also construct a solution of problem (1)–(3) in the form of special series
(22) with recurrently calculation coefficients. Numerical calculations for problem (17)–(19) have shown that domain
of convergence of series (22) will be less than the domain of convergence of the series (13).
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