
AIP Conference Proceedings 2048, 020007 (2018); https://doi.org/10.1063/1.5082025 2048, 020007

© 2018 Author(s).

Optimal control of the system of coupled
cylinders
Cite as: AIP Conference Proceedings 2048, 020007 (2018); https://doi.org/10.1063/1.5082025
Published Online: 11 December 2018

Yu. F. Dolgii, A. A. Petunin, A. N. Sesekin, and O. L. Tashlykov

ARTICLES YOU MAY BE INTERESTED IN

Impulse position control for differential inclusions
AIP Conference Proceedings 2048, 020008 (2018); https://doi.org/10.1063/1.5082026

Application of dynamic economic-mathematical modeling in optimization problems in
banking
AIP Conference Proceedings 2048, 020005 (2018); https://doi.org/10.1063/1.5082023

Mixed sensitive controller design for wind turbine
AIP Conference Proceedings 2048, 020002 (2018); https://doi.org/10.1063/1.5082020

https://printorders.aip.org/?utm_source=Scitation&utm_medium=banner&utm_campaign=PDF%20Cover%20Page%20POD
https://doi.org/10.1063/1.5082025
https://doi.org/10.1063/1.5082025
https://aip.scitation.org/author/Dolgii%2C+Yu+F
https://aip.scitation.org/author/Petunin%2C+A+A
https://aip.scitation.org/author/Sesekin%2C+A+N
https://aip.scitation.org/author/Tashlykov%2C+O+L
https://doi.org/10.1063/1.5082025
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5082025
https://aip.scitation.org/doi/10.1063/1.5082026
https://doi.org/10.1063/1.5082026
https://aip.scitation.org/doi/10.1063/1.5082023
https://aip.scitation.org/doi/10.1063/1.5082023
https://doi.org/10.1063/1.5082023
https://aip.scitation.org/doi/10.1063/1.5082020
https://doi.org/10.1063/1.5082020


Optimal Control of the System of Coupled Cylinders

Yu. F. Dolgii1,2, A. A. Petunin2, A. N. Sesekin1,2,a) and O. L. Tashlykov2

1N. N. Krasovskii Institute of Mathematics and Mechanics, UB of RAS, 16 S. Kovalevskaya, Ekaterinburg, 620990,
Russia.

2Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia.

a)Corresponding author: sesekin@list.ru

Abstract. We consider the problem of optimal control of a system consisting of two coupled cylinders. Such a system is a mathe-
matical model of the nuclear fuel transfer mechanism at the nuclear power plant reactor. And also, such models are found in various
robotic systems. We have obtained optimal control under certain assumptions on a controllable system.

INTRODUCTION

The time optimal problem for a mechanical system consisting of two coupled cylinders is considered. Such models
are found in various technical systems (see [1, 2]). Therefore, the problem under consideration seems to be rele-
vant. We have obtained optimal control for the linear model of the problem. A feature of this optimal control is its
nonuniqueness. For a nonlinear model, we propose a variant of its reduction to a quasilinear problem.

MATHEMATICAL MODEL OF SYSTEM COUPLED CYLINDERS

There is a fixed cylinder of radius R0, inside of which there is a circular cutout of radius R1 (see Figure 1). In this cutout
is placed another cylinder, which can rotate inside a fixed cylinder. At the same time, its geometric center remains
stationary. This cylinder has an eccentric circular cutout of radius R2, inside of which is placed a small cylinder - a
disk of radius R2. When describing the interaction of the cylinders, we neglect the forces of friction. The motion of the
mechanical system is flat. The axial moments of inertia of the large and small cylinders are J1 and J2, respectively, and
their masses are m1 and m2. The distance between the geometric centers of the large and small cylinders (eccentricity)
is e1.

To describe the dynamics of the mechanical system with two degrees of freedom, we use the Lagrange equations
of the second kind [3]. As generalized coordinates, we select the angle of rotation of the large cylinder — φ1 and the
angle of rotation of the small cylinder — φ2 with respect to the large cylinder. The generalized forces are the control
moments u1 and u2 applied to the large and small cylinders, respectively. The kinetic energy of the system is given by

T =
1
2

(
(J1 + J2 + m2e2

1)φ̇2
1 + (J2 + m2e2

2)φ̇2
2 + 2(J2 + m2e1e2 cos(φ2))φ̇1φ̇2

)
.

Assuming that the geometric center of the small cylinder coincides with its center of mass e2 = 0, we find that
the mathematical model of a system of coupled cylinders will be described with the help of the following Lagrange
equations of the second kind:

(J1 + J2 + m2e2
1)φ̈1 + J2φ̈2 = u1, J2(φ̈1 + φ̈1) = u2. (1)

The control moments applied to the large and small cylinders, respectively, satisfy the constraints

|u1| ≤ µ1, |u2| ≤ µ2. (2)
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FIGURE 1. Scheme of coupled cylinders.

We solve the equations of motion relative to the second derivatives φ1 and φ2. As a result, we obtained{
φ̈1 = a1(u1 − u2),
φ̈2 = −a1u1 + a2u2,

(3)

where

a1 =
1

J1 + m2e2
1

, a2 =
J1 + J2 + m2e2

1

J2(J1 + m2e2
1)
. (4)

We write the system (3) in the normal form: 
φ̇1 = ω1,
ω̇1 = a1(u1 − u2),
φ̇2 = ω2,
ω̇2 = −a1u1 + a2u2.

(5)

The coordinates of the point in the fixed coordinate system r and θ are related to the variables φ1 and φ2 using
formulas

R =
√

(R1 − R2)2 + R2
2 − 2(R1 − R2)R2 cos(π − φ2), (6)

θ = φ1 + arccos
R2 + (R1 − R2)2 − R2

2

2(R1 − R2)R
signφ2. (7)

The following problem will be considered below. Let the initial point have coordinates x0 = (φ0
1, 0, φ

0
2, 0)⊤ and

the endpoint — x f = (φ f
1 , 0, φ

f
2 , 0)⊤. Phase vector x(t) = (φ1(t), ω1(t), φ2(t), ω2(t))⊤ is described by the system of

equations (5). It is required to move the phase point from the initial state to the final state in the shortest time, subject
to the constraints (2).
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TIME OPTIMAL PROBLEM

First we consider the auxiliary problem. We introduce a new variable φ = φ1 +φ2. It follows from (3), (4) that the new
variable satisfies equation

φ̈ = (a2 − a1)u2, (8)

or system {
φ̇ = w,
ẇ = (a2 − a1)u2.

(9)

We consider the problem of the fastest moving from the initial position (φ(0), 0)⊤ to position (φ(ϑ), 0)⊤, where φ(0) =
φ0

1 + φ
0
2, φ(ϑ) = φ f

1 + φ
f
2 , for the shortest time ϑ.

We apply the Pontryagin maximum principle to this problem [4]. Let

H(ψ1, ψ2, φ,w, u2) = ψ1w + ψ2(a2 − a1)u2.

The conjugate system will have the form {
ψ̇1 = 0,
ψ̇2 = −ψ1.

(10)

Consequently ψ1 ≡ ψ10, ψ2 = −ψ10t + ψ20. If ψ10 = 0 ψ2(t) ≡ ψ20, than the control u2 according to the maximum
principle will have the form

u2 = µ2sign[(a2 − a1)ψ2(t)]. (11)

We see from (11), that the control u2 will not have any switches. Otherwise, we will not be able to provide the
boundary conditions φ̇(0) = w(0) = φ̇(ϑ) = w(ϑ) = 0. Hence ψ10 , 0 and the optimal control will have one switch.
According to (10) and (11)

w(t) = µ2

∫ t

0
sign[(a2 − a1)ψ2(s)] ds.

Let ϑ∗ be the switching point. Then for t ∈ [0, ϑ∗)

w(t) = µ2

∫ t

0
sign[(a2 − a1)ψ20] ds = µ2sign[(a2 − a1)ψ20]t,

and for t ∈ (ϑ∗, ϑ]
w(t) = µ2sign[(a2 − a1)ψ20](2ϑ∗ − t).

From the condition w(0) = w(ϑ) = 0 it follows that

w(ϑ) = µ2sign[(a2 − a1)ψ20](2ϑ∗ − ϑ) = 0.

As a result, we have

ϑ∗ =
ϑ

2
.

After integrating the system (9) with control (11), we get that

φ(t) = φ(0) + µ2sign[(a2 − a1)φ20]
t2

2

for t ∈ [0, ϑ2 ) and

φ(t) = φ(0) + µ2sign[(a2 − a1)φ20]
ϑ2

8
− µ2sign[(a2 − a1)φ20]

(t − ϑ)2

2

for t ∈ (ϑ2 , θ]. Therefore

φ(ϑ) = φ(0) + µ2sign[(a2 − a1)φ20]
ϑ2

8
.
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Then

φ(ϑ) − φ(0) = µ2sign[(a2 − a1)φ20]
ϑ2

8
.

Consequently sign(φ(ϑ) − φ(0)) = sign[(a2 − a1)φ20]

ϑ2 =

√
|φ(ϑ) − φ(0)|

µ2
. (12)

As a result, optimal control will take the form

u2(t) = µ2 sign (φ(ϑ) − φ(0)) sign
(
t − ϑ

2

)
. (13)

We introduce a new function χ = φ1 +
a1
a2
φ2. It follows from (3) that the function χ(t) satisfies the equation

χ̈ =
a1

a2
(a2 − a1) u1. (14)

We write this equation in the form of a system{
χ̇ = η,
η̇ = a1

a2
(a2 − a1) u1.

(15)

To find the control, we consider the boundary value problem

χ(0) = φ0
1 +

a1

a2
φ0

2, χ(ϑ) = φ f
1 +

a1

a2
φ

f
2 , η(0) = η(ϑ) = 0. (16)

From the system (15) and the boundary condition (16) it follows that∫ ϑ

0
u1(s) ds = 0, χ(ϑ) = χ(0) +

∫ ϑ

0
(ϑ − s)u1(s) ds. (17)

In the last expression ϑ can be replaced by ϑ
2 , because

∫ ϑ

0 u1(s) ds = 0. As a result, from (17) we have

χ(ϑ) − χ(0) =
∫ ϑ

0

(
ϑ

2
− s

)
u1(s) ds. (18)

We look for control u1 in the form of the following relay control

u1 = β1sign
(
t − ϑ

2

)
, t ∈ [0, ϑ]. (19)

After substituting (19) into (18), we get χ(ϑ) − χ(0) = −β1
ϑ2

8 . From here

β1 =
8 (χ(0) − χ(ϑ))

ϑ2 . (20)

So we got control

u1 =
8(φ0

1 − φ
f
1 +

a1
a2

(φ0
2 − φ

f
2 ))

ϑ2 sign
(
t − ϑ

2

)
, (21)

which solves the above boundary-value problem (16).
If |β1| > µ1, then we must first solve the time optimal problem for the system (15) under the boundary conditions

(16) and the control constraint |u1| ≤ µ1.
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It is not difficult to show that in this case

ϑ1 =

√
a2|χ(ϑ1) − χ(0)|

a1µ2
. (22)

and

u1(t) = µ1 sign (χ(ϑ1) − χ(0)) sign
(
t − ϑ

2

)
. (23)

The control u2 will be sought from the boundary value problem

φ(0) = φ0
1 + φ

0
2, φ(ϑ) = φ f

1 + φ
f
2

for the system
φ̇ = w, ẇ = (a2 − a1)u2. (24)

Making similar calculations we obtain that

u2(t) =
8(φ0

1 − φ
f
1 + (φ0

2 − φ
f
2 ))

ϑ2
1

sign
(
t − ϑ1

2

)
, (25)

Thus, we have constructed the optimal control for the original problem. It should be noted that the optimal control
in this problem is not unique. This follows from the fact that the boundary-value problem has a non-unique solution.
We have found relay controls that solve the boundary problem. Obviously, there are other solutions.

NON-LINEAR VERSION OF THE PROBLEM

Equations of motion (1) are obtained under the assumption that c2 = 0. This assumption is permissible in the first
approximation. But in real systems this value is small, but still different from zero. Under the assumption that c2 , 0,
the Lagrange equations of the second kind will have the form(

J1 + J2 + m2e2
1

)
φ̈1 + (J2 + m2e1e2 cos(φ2)) φ̈2 − m2e1e2 sin(φ2)(φ̇2)2 = u1,

(J2 + m2e1e2 cos(φ2)) φ̈1 +
(
J2 + m2e2

2

)
φ̈2 = u2. (26)

All the coefficients included in these equations were described earlier.
Solving the system (26) with respect to φ̈1 and φ̈2, we obtain

φ̈1 =
1
∆

(
(J2 + m2e2

2)m2e1e2 sin(φ2)(φ̇2)2 + (J2 + m2e2
2)u1 − (J2 + m2e1e2 cos(φ2))u2

)
,

φ̈2 =
1
∆

(
(J1 + J2 + m2e2

1)u2 − (J2 + m2e1e2 cos(φ2))u1 − m2e1e2 sin(φ2)(J2 + m2e1e2 cos(φ2))(φ̇2)2
)
, (27)

where
∆ = (J1 + J2 + m2e2

1)(J2 + m2e2
2) − (J2 + m2e1e2 cos(φ2))2.

We expand the right-hand side of the equations (27) with respect to e2 and preserve only terms not exceeding the first
order in e2. As a result, we get

φ̈1 = a1(u1 − u2) +
m2e1 sin(φ2)(φ̇2)2

J1 + m2e2
1

e2 −
m2e1 cos(φ2)
J2(J1 + m2e2

1)
e2u2.

φ̈2 = −a1u1 + a2u2 +
m2e1 cos(φ2)
J2(J1 + m2e2

1)
e2u1 −

m2e1 sin(φ2)
J1 + m2e2

1

e2. (28)

We obtained a controllable system of differential equations with a small parameter e2. Thus, a quasilinear model is
constructed for the control object. The speed problem for an object described by the equations (28) can be solved, for
example, using the methods proposed in [5].
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CONCLUSIONS

For the linear model of the optimal control problem for the system of two coupled cylinders, optimal control is found.
The peculiarity of the optimal control found is its nonuniqueness. For a nonlinear model, a variant of reducing such a
model to a quasilinear model with a small parameter is proposed.
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