A method for language attribution based on assessment of text irregularity

Dmitry A. Tarasov

ARTICLES YOU MAY BE INTERESTED IN

Multilayer perceptron, generalized regression neural network, and hybrid model in predicting the spatial distribution of impurity in the topsoil of urbanized area
AIP Conference Proceedings 1982, 020004 (2018); https://doi.org/10.1063/1.5045410

Fourier transform in elliptic coordinates: Case of axial symmetry
AIP Conference Proceedings 1982, 020007 (2018); https://doi.org/10.1063/1.5045413

Fibers of polynomial mappings over \(\mathbb{R}^n \)
AIP Conference Proceedings 1982, 020010 (2018); https://doi.org/10.1063/1.5045416
A method for language attribution based on assessment of text irregularity

Dmitry A. Tarasov

Ural Federal University, Ekaterinburg, Russia
datarasov@yandex.ru

Abstract. In the work, it is proposed to use a fractal driven index irregularity as a base for language attribution of text. A method for such an attribution of electronic texts is offered. The method may be applied in Big Data analysis, electronic library operation, natural language processing and so on. We examined texts in nine languages, set up with two major fonts. The approach shows the ability to distinguish different languages using the offered irregularity based index only, without reading texts and expert language assessment. The method may be further extended for texts in bitmap.

INTRODUCTION

Current intensive grow of information requires special tools for data assessment. Analysis of text data is one of the major areas of information processing in Big Data applications. Existing methods for textual information analysis take into account only its semantic part and do not operate with its spatial form [1]. It is known that the level of understating of the textual materials depends on a font’s spatial form [2], [3]. However, for a long period it had not been proposed a method for a numerical assessment of spatial features of texts. Using irregularity of fonts as quantitative assessment of the font’s drawing allows expand a set of measurable parameters at textual data analysis [4]. The proposed irregularity is a fractal driven and scale invariant index accounting spatial features of a particular font. The method of irregularity (C) calculation is simple and do not require high computing power [4]. The value of the indicator is calculated by the formula (1).

\[C = \frac{P^2}{4\pi S} \]

where \(P \) is a total perimeter of curves, and \(S \) is a total area of characters from the set of letters that forms the font. As a set of letters, we used all uppercase and all lowercase letters from the Russian (or any other alphabetically based) language, thus the irregularity depends not only on the font’s shape but also on number of letters in a language.

For the calculations, we utilized vector forms of fonts, which were operated in the CorelDraw vector software package. Further, we confirmed additivity of the irregularity [5] and proposed a method for calculation of irregularity for raster fonts by their bitmaps [6]. Thus, the method might be considered sufficiently developed.

The obvious modification of the approach might imply specific units of the irregularity. First, we might divide the irregularity by the number of characters. Moreover, to determine the quantitative characteristics of the text, it does not necessarily use only the full set of letters in the language. We can apply the calculation of irregularity for any set of characters that is large enough to represent the language. The volume of such a sufficient set is still a question. Finally, we can simplify the irregularity itself by removing the constant \(4\pi \) from consideration and by modifying the formula (1) and the calculating method without significant impact on the result. The purpose of such a modification might be application of the approach for text attribution in order to distinguish different languages. As each language has its unique hidden, intrinsic feature that can be defined by the text structure and letters’ frequency...
appearance analysis [7], we can expect that any particular language might have its own irregularity-based index, which defines the language in a unique way.

The aim of the work is to offer the method for language attribution based on assessment of text irregularity.

APPROACH

Since the language as a whole is characterized by a particular index (based on χ^2 statistics or other nature), each set of letters forming a coherent text, large enough to represent the language might be considered a language “unit”. The task is to distinguish a numerical value of this “unit”.

We propose to use an irregularity-based index, which we call I factor (2).

$$I = \frac{P^2}{Sn},$$

where n is a number of characters in the text excerpt being assessed. Thus, we can say that the index is the average character irregularity of the font of the chosen language.

To calculate such a factor, we use the same method as used for irregularity assessment applying CurvelInfo macro in CorelDraw application [4]. The only limit is that this method is applicable for vector representations of texts only. However, further it is easy to expand the bitmaps assessment technique [6] for such a calculation.

For the experiment, we selected two major fonts (Arial and Times New Roman) and nine European alphabetically based languages (Russian-Rus, English-Eng, French-Fra, Italian-Ita, Spanish-Spa, German-Ger, Turkish-Tur, Greek-Gre, and Czech-Cze). We also assessed the I factor for highly irregular alphabets of Georgian-Geo, Armenian-Arm and Arabic-Ara languages.

As a text sample, we used the famous novel “War and Peace” by Leo Tolstoy as it was easy to find this piece of art in different languages.

The first stage of the experiment consisted of I factor calculations for each selected language (including three additional languages for comparison) and for two selected fonts. For this stage, we used text excerpts of 1000-2000 characters.

The second stage was ranking languages by their I factors and building dependency graphs.

The third stage of the work was to identify the behavior of the I factor when changing the number of characters in the evaluation sample and plot dependency graphs. For this stage, we used Arial font only as behavior of I factors for Times New Roman is the same.

RESULTS AND DISCUSSIONS

The results of I factor calculations for nine basic and three additional languages and for two fonts are shown in Table 1 and in Figure 1. The languages have been already ranked by increase of I factors.

As it may be seen from the Table 1, the additional languages (Georgian, Armenian and Arabic) have significantly higher I factors than other ones, so further we eliminated them from consideration.

In Figure 1, Arial and Times New Roman outlines for Arabic language (Ara) were the same.

The behavior of the I factors for the Arial font for nine languages when changing the number of characters in the evaluation text samples are shown in Table 2 and Figure 2.

As it can be seen from the Figure 2, different languages demonstrate a substantially different behavior of the I factor. The relative stability of the dependency behavior begins to be observed after approximately 3,000 characters in the text sample. Moreover, we can predict that such a behavior may significantly vary when using different fonts. Thus, the predictor of a language can be not only the factor itself, but also the dynamics of its change calculated for different fonts.

We see the opportunity to distinguish between languages by the I factor, and by its dynamics. The exception may be close languages, such as Italian and Spanish, where the difference can be traced only by the dynamics of the I factor, as it can be seen in Table 2 and in Figure 2.
TABLE 1. I factors for different languages.

<table>
<thead>
<tr>
<th>Language</th>
<th>Number of characters in samples</th>
<th>I factor for Arial</th>
<th>I factor for Times New Roman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek - Gre</td>
<td>1145</td>
<td>41.913</td>
<td>53.226</td>
</tr>
<tr>
<td>Italian - Ita</td>
<td>2168</td>
<td>44.621</td>
<td>54.872</td>
</tr>
<tr>
<td>Spanish - Spa</td>
<td>1133</td>
<td>44.913</td>
<td>55.385</td>
</tr>
<tr>
<td>French - Fra</td>
<td>1721</td>
<td>46.920</td>
<td>58.227</td>
</tr>
<tr>
<td>English - Eng</td>
<td>979</td>
<td>47.762</td>
<td>60.709</td>
</tr>
<tr>
<td>Czech - Cze</td>
<td>947</td>
<td>48.081</td>
<td>60.771</td>
</tr>
<tr>
<td>Turkish - Tur</td>
<td>1077</td>
<td>48.573</td>
<td>61.760</td>
</tr>
<tr>
<td>Russian - Rus</td>
<td>1009</td>
<td>50.115</td>
<td>66.612</td>
</tr>
<tr>
<td>German - Ger</td>
<td>1313</td>
<td>52.108</td>
<td>66.341</td>
</tr>
<tr>
<td>Georgian - Geo</td>
<td>924</td>
<td>61.061</td>
<td>75.382</td>
</tr>
<tr>
<td>Arabic - Ara</td>
<td>808</td>
<td>65.839</td>
<td>65.834</td>
</tr>
<tr>
<td>Armenian - Arm</td>
<td>1023</td>
<td>88.075</td>
<td>97.970</td>
</tr>
</tbody>
</table>

FIGURE 1. I factors for twelve languages and two fonts
TABLE 2. \(I \) factors dynamics for different languages.

<table>
<thead>
<tr>
<th>Language</th>
<th>20-50</th>
<th>80-160</th>
<th>180-300</th>
<th>400-600</th>
<th>700-900</th>
<th>901-2200</th>
<th>2201-4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek - Gre</td>
<td>42.114</td>
<td>42.223</td>
<td>42.239</td>
<td>41.869</td>
<td>41.482</td>
<td>41.913</td>
<td>42.065</td>
</tr>
<tr>
<td>Italian - Ita</td>
<td>46.442</td>
<td>44.799</td>
<td>44.740</td>
<td>44.915</td>
<td>45.613</td>
<td>44.621</td>
<td>45.414</td>
</tr>
<tr>
<td>Spanish - Spa</td>
<td>44.100</td>
<td>45.088</td>
<td>44.809</td>
<td>44.965</td>
<td>44.762</td>
<td>44.913</td>
<td>45.124</td>
</tr>
<tr>
<td>French - Fra</td>
<td>39.567</td>
<td>43.636</td>
<td>44.955</td>
<td>45.509</td>
<td>46.185</td>
<td>46.920</td>
<td>47.635</td>
</tr>
<tr>
<td>English - Eng</td>
<td>45.972</td>
<td>50.380</td>
<td>49.644</td>
<td>47.808</td>
<td>47.309</td>
<td>47.762</td>
<td>48.306</td>
</tr>
<tr>
<td>Czech - Cze</td>
<td>44.467</td>
<td>47.339</td>
<td>47.510</td>
<td>48.867</td>
<td>48.074</td>
<td>48.081</td>
<td>49.200</td>
</tr>
<tr>
<td>Turkish - Tur</td>
<td>49.247</td>
<td>49.040</td>
<td>48.723</td>
<td>48.468</td>
<td>47.809</td>
<td>48.573</td>
<td>50.298</td>
</tr>
<tr>
<td>Russian - Rus</td>
<td>60.186</td>
<td>51.211</td>
<td>48.289</td>
<td>50.155</td>
<td>49.734</td>
<td>50.115</td>
<td>48.543</td>
</tr>
<tr>
<td>German - Ger</td>
<td>56.613</td>
<td>54.555</td>
<td>53.496</td>
<td>52.503</td>
<td>51.824</td>
<td>52.108</td>
<td>51.751</td>
</tr>
</tbody>
</table>

FIGURE 2. \(I \) factors behavior for different languages depending on the number of characters, Arial font.

The extension of amount of characters in the text sample for \(I \) factor calculation may lead to stabilization of the factor. This may be utilized in Big Data operation as an additional document attribute that expands the ability to sort documents and improve the work of search engines.
Investigations of the dynamics of the factor will allow eliciting the structural features of different languages, which can be used in structural linguistics and analysis of unknown languages.

In the more complicated case of raster text samples (scanned documents, manuscripts, books etc.) we can apply the approach [6] that requires modification just as it is described above. The only problem might be scan quality as correct irregularity calculation strongly depends on the resolution of a rasterized sample.

CONCLUSION

Big Data operation, particularly in current search engines requires fast approach for text attribution in the light of the extraordinary growth in the number of documents available for analysis.

Thousands of studies in legibility have led to contradictory results. Moreover, until now, there is no consensus among scientists about what factors and how affect reading and spatial text perception. Researchers do not know how account the spatial form of the text as in legibility studies, so in numerical text analysis.

Currently, it was possible to measure almost all spatial features of text except font. This was probably due to the lack of an objective index, which could describe a typeface numerically. If we numerically describe font we can describe text as a whole.

We assumed that the similarity of some graphic elements of letters in font and the letters themselves, as well as the font as a whole, suggests the possibility of using the ideas of fractal geometry to make such an assessment. Fractal dimension that can be understood as the degree of filling the space by an irregularly distributed substance. The fractal Minkowski dimension d combines the number of objects n and their geometric size a. Mandelbrot further showed that for fractal sets the expression related to the length of the perimeter P and the area S of the object.

In other words, in either family of flat figures (e.g. characters of a font), that are geometrically similar but having different linear dimensions, the ratio of the length of the shapes border to the square root of its area is a number that is completely determined by the general form for the family. Thus, we defined the compactness and irregularity for a set of characters. The set of characters in our works is represented by the whole set of font’s letters together with its division into internal and external volumes because the account of these volumes in the formula is made differently.

Application the irregularity as a quantitative assessment of the font’s drawing allows to expand a set of measurable parameters at textual data analysis. The irregularity is approved to be scale invariant. We have also confirmed its additivity and the negative correlation between irregularity and reading speed.

The proposed method of irregularity assessment is simple and do not require high computing power. For the calculations, we utilized vector forms of fonts, which were operated in the CorelDraw software package with help of CurvelInfo macro. Further, we proposed a method for calculation of irregularity for raster fonts by their bitmaps.

In this work, we offer a simple method for language attribution of electronic texts by a specially developed I factor. The factor, as well as its forerunner irregularity, is based on the ideas of fractal geometry and may be easily implemented in any text analysis system.

As each language has its unique hidden, intrinsic feature that can be defined by the text structure and letters’ frequency appearance analysis, we can expect that any particular language might has its own irregularity-based index, which defines the language in a unique way. The index is the average character irregularity of a particular font of the chosen language. To calculate such a factor, we use the same method as used for irregularity assessment.

The possibility of extension of the method onto the field of rastered text (scanned texts, documents, manuscripts, books) stored in electronic libraries may affect to the improvement of library documents management.

The proposed approach might be applied together with other methods of language and documents processing and is able to lead to their further development.

REFERENCES

