Studying damage accumulation in martensitic corrosion-resistant steel under cold radial reduction

A. P. Karamyshev, I. I. Nekrasov, A. V. Nesterenko, V. S. Parshin, S. V. Smirnov, V. P. Shveikin, and A. A. Fedulov

ARTICLES YOU MAY BE INTERESTED IN

Evaluating structural and phase changes in individual layers of multilayer products with the use of differential magnetic permeability
AIP Conference Proceedings 1915, 020002 (2017); https://doi.org/10.1063/1.5017314

Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications
AIP Conference Proceedings 1915, 020004 (2017); https://doi.org/10.1063/1.5017316

The thermal expansion and thermophysical properties of an aluminum and Al/\text{B}_4\text{C} composite
AIP Conference Proceedings 1915, 030005 (2017); https://doi.org/10.1063/1.5017325
Studying Damage Accumulation in Martensitic Corrosion-Resistant Steel under Cold Radial Reduction

A. P. Karamyshev¹, I. I. Nekrasov¹, A. V. Nesterenko², V. S. Parshin¹, S. V. Smirnov², V. P. Shveikin², a) and A. A. Fedulov¹, b)

¹Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Ekaterinburg, 620002, Russia www.urfu.ru
²Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St., 620049, Ekaterinburg, Russia www.imach.uran.ru

a)Corresponding author: shveikin60@mail.ru
b)aa.fedulov@urfu.ru

Abstract. Cold radial reduction of specimens made of the Kh17N2 corrosion-resistant martensitic steel is studied on a lever-type radial-forging machine (RFM). The mechanical properties of the deformed specimens, the “damage accumulation – strain” relation in the specimens are obtained with the application of hydrostatic and fractographic methods for fractured specimens. The damage of the Kh17N2 corrosion-resistant steel is evaluated as a result of an experimental study considering the data of simulation by a complex finite element model of cold deformation on a lever-type RFM.

INTRODUCTION

The distinguishing feature of the process of cold radial reduction on a lever-type RFM is the ability to achieve a large deformation of billets without intermediate annealing or fractures. The main goal of the study is to evaluate damage accumulation (formation of pores) in a Kh17N2 steel workpiece under deformation on a lever-type RFM with the use of process modeling results and experimental data.

Kh17N2 is a chromium-nickel steel of the martensitic class, with increased corrosion resistance to environmental conditions and some chemical media. The chemical composition of the steel is 0.15÷0.16% C; 0.37÷0.48% Si; 0.51÷0.88% Mn; 15.9÷16.8% Cr; 2.12÷2.17% Ni; 0.008÷0.075% N. This steel is often used in the production of compressor blades of gas turbines and location bracketry working at temperatures above 450 °C [1].

KH17N2 ROD REDUCTION ON A RFM

Kh17N2 corrosion-resistant steel specimens are subjected to cold radial reduction on a lever-type RFM. The rod with the initial diameter of 32.3 mm is subsequently reduced in 8 passes to a diameter of 16.4 mm. The mechanical properties of the rod, namely, flow stress σ, ultimate strength σₜ, percentage elongation δ and percentage reduction φ, determined to evaluate the strain dependences of flow stress are presented in Table 1.

Further reduction (the 9th pass) to a diameter of 15.5 mm leads to visible cracks appearing on the rod body. According to this fact, the conclusion is made that the limiting damage value in the process has been reached.
Theoretical Determination of the Damage Value

The theoretical basis for the analysis of fractures during large plastic deformations was described in [2-3]. The phenomenological theories discussed in [4-6] have the most general application to the practical evaluation of damage.

During the radial forging of billets, the maximal damage is observed in the axial zone of the billet. Since the axial zone is under monotonic deformation conditions, the value of damage is defined as [7]

\[\psi_i = \frac{A_i}{A_{pi}}, \]

(1)

where \(\psi_i \) is the plasticity resource utilization factor on the \(i^{th} \) pass of deformation; \(A_i \) is the increment of shear strain as the metal particles go through the deformation zone in the \(i^{th} \) pass of deformation;

\[A_i = 2\sqrt{3} \ln \left(\frac{d_{i-1}}{d_i} \right), \]

(2)

where \(d_{i-1}, d_i \) are rod diameters in the \((i - 1)^{th}\) and \(i^{th}\) passes of deformation, respectively; \(A_{pi} \) is metal plasticity in the \(i^{th}\) pass of deformation.

With a sufficient accuracy, the plasticity of the metal can be defined as

\[A_{pi} = \chi \cdot \exp(\lambda \cdot k_{avg}), \]

(3)

where \(k_{avg} \) is the average value of the stress state index in the \(i^{th}\) pass of deformation; \(\chi \) and \(\lambda \) are the coefficients of the plastic properties of the metal.

The stress state index \(k \) is defined as the relation of the value of mean stress to the value of effective stress. It is a nondimensional quantity, which uniquely characterizes the stress state during plastic deformation and allows one to compare the stress state of materials with different levels of strength properties.

In order to determine the damage value after several passes of deformation, one needs to use the expression

\[\psi = \sum_{i=1}^{n} \psi_i, \]

(4)

where \(n \) is the number of deformation passes.

The modeling of Kh17N2 steel rod reduction allows us to obtain the values of the stress state index and to find the value of damage after forging passes and its total value. On the whole, the complex model of deformation on a lever-type RFM offers mechanical variables of the deformation zone based either on the method of solving approximate equilibrium equations and the plasticity condition or on the FEM, depending on the problem statement [7-9].

Table 2 lists the calculation results of the stress state index \(k_i \), the value of damage \(\Psi_i \), the total value of damage \(\Sigma \Psi \) for different values of the shear strain increment \(\Lambda_i \).
As it follows from Table 2, the cold radial reduction process on the lever-type RFM is characteristic of a favorable scheme of the stress-strain state. This confirms the sufficiently great negative values of the stress state index in all the passes, and this, in turn, increases the plasticity of the material being processed and provides large total reduction without billet fracture. The calculated value of accumulated damage is in agreement with the experimental data (Table 1) and, besides, it is proved by the specimen cracking when the specimen reduction reaches the diameter of 15.5 mm.

On the example of one of the forging passes, FE solution results are presented, which allow us to evaluate the overall behavior of the process. Figure 1a and b shows, respectively, the distribution of the mean stress and the effective stress in the longitudinal section of the deformation zone. The upper forging die is in the lowermost position (the other dies are not shown).

![FIGURE 1. The longitudinal section of the deformation zone: mean stress distribution (a); effective stress distribution (b)](image)

EXPERIMENTAL METHODS FOR DAMAGE EVALUATION

The main criteria evaluating the level of the development of the fracture zones with the progress of plastic deformation is the value of damage Ψ. With Ψ no greater than 0.2 ÷ 0.3, the development of dislocation structures and the formation of elastic defects in the form of submicrorcracks and micropores occur in the metal under deformation, which are healed during recrystallization annealing. With $\Psi = 0.6 ÷ 0.7$, energetically stable defects, which are not removed by recrystallization, arise and remain in the metal. With a subsequent increase in damage, closely-spaced micropores join to form cavitations in the form of cracks and pores, and this leads to the physical destruction of the billet ($\Psi = 1$). The changes in the density of the metal during deformation are caused by the development of the continuity of inner microdefects, which is considered as a factor of damage [10, 11].

The phase structure of the Kh17N2 steel specimens in the initial state and after a maximum reduction of 75% is determined by X-ray structural analysis on a Shimadzu XRD-7000 X-ray diffractometer with monochromatic Kα-radiation from a chromium anode. The obtained diffraction patterns are displayed in Fig. 2. As is seen, the diagrams for the specimen in the initial state and at the maximum reduction are almost identical. There are reflections only from the D-phase (martensite) on them. The difference in the ratios of the X-ray reflections for the specimens in the initial state and after the deformation can be explained by the appearance of a crystallographic texture during...
deformation. Therefore, the strain up to 75% does not produce phase transformations in the Kh17N2 steel, and this testifies that, during the cold radial reduction of the Kh17N2 steel, there are no density changes due to the $\gamma \rightarrow \alpha$-phase transformation, and plastic loosening is caused only by the accumulation of strain-induced defects (micropores).

For the precise measurement of density, the differential hydrostatic weighing method is applied [12]. The weighing is carried out on an Ohaus Adventurer precision analytical balance, whose measurement error is 0.001 g. Statistical analysis of the experimental data after density calculation is performed for a small selection ($n < 25$) with a confidence probability of 0.95. As a result, with the increasing reduction of the Kh17N2 steel specimens on the RKM, a monotonic decrease in density can be observed (up to a strain of approximately 40%). When the strain exceeds 40% (cross-section narrowing), the stage of saturation occurs while the density remains constant (with a slight elevation), despite the strain increase (Fig. 3).

FIGURE 2. Diffraction patterns for Kh17N2 steel specimens (--- the initial state; --- 75% strain)

FIGURE 3. The density vs diameter graph for deformed Kh17N2 steel specimens

To render and evaluate accumulate damage and to verify the density-strain graph obtained by the hydrostatic weighing method, a fractographic study of specimen fracture is carried out on a Tescan Vega II XMU scanning electron microscope [13]. The results of the fractographic examination of the brittle fractures of Kh17N2 steel specimens agree well with the data on the density of the corresponding specimens (Fig. 4). It is obvious from Fig. 4a that the structure of the fracture of the initial (non-deformed) specimen is represented by cleavage facets, with an almost complete absence of pores and microcracks. In the fracture of the rod forged with a maximum reduction of 74.4% (Fig. 4b), pores and microcracks are clearly visible, which loosen the material and decrease its density.
FIGURE 4. Fractographs of Kh17N2 steel rod cracks (×5000): a non-deformed specimen with a diameter of 32.3 mm (a); a deformed specimen with a diameter of 16.4 mm (b)

CONCLUSION

1. The main feature of the cold radial reduction process performed on a lever-type RFM is the possibility to attain a large strain in the deformation of martensitic corrosion-resistant billets. This fact is explained by the favorable scheme of the stress-strain state, and this corresponds to uniform compression with a significantly negative value of the stress state index in each pass of deformation.
2. The simulation of accumulated damage with the use of the FE model of deformation on a lever-type RFM has been verified with a sufficient accuracy by the conducted experimental study.
3. The results of the fractographic analysis of the Kh17N2 steel agree well with the data on the specimen density obtained by the hydrostatic weighing method.

REFERENCES