Е. А. Громова, О. И. Горинов Ивановский государственный энергетический университет, г. Иваново, katingromova@mail.ru

ПРОИЗВОДИТЕЛЬНОСТЬ ТЕРМИЧЕСКИХ РЕАКТОРОВ ПО ПЕРЕРАБОТКЕ ТВЕРДЫХ ОРГАНИЧЕСКИХ ОТХОДОВ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРНЫХ РЕЖИМОВ

В работе изложена теория аналитического определения скорости термической переработки слоя твердых органических отходов и производительность термических реакторов, предназначенных для этих целей.

Ключевые слова: *термическая переработка*; *твердые* органические отходы; пиролиз, газификация; скорость термической переработки.

E. A. Gromova, O. I. Gorinov Ivanovo State Power University, Ivanovo

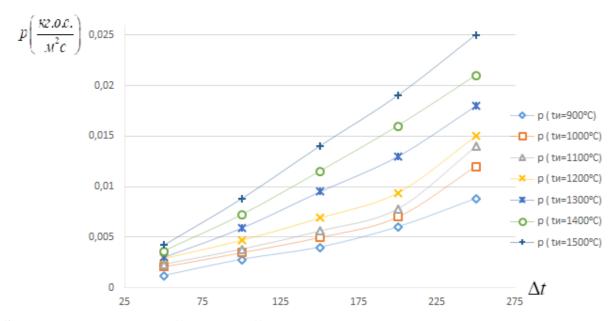
PERFORMANCE OF THERMAL REACTORS FOR THE PROCESSING OF SOLID ORGANIC WASTES DEPENDING ON TEMPERATURE MODES

The paper presents a theory of analytical determination of the rate of thermal processing of a layer of solid organic waste and the performance of thermal reactors designed for these purposes.

Keywords: thermal processing; solid organic waste; pyrolysis; gasification, rate of thermal processing.

Проблема утилизации твердых органических отходов (ТОО) остро стоит во всем мире. В Российской Федерации особая

 $^{\ \ \, \}mathbb{C}\$ Громова Е. А., Горинов О. И., 2018


актуальность проблемы утилизации ТОО возникает в крупных городах и населенных пунктах. Её решение тесно связано с охраной окружающей среды и ресурсосбережением [1–3]. Термическая переработка твердых органических отходов процессами пиролиза и газификации осуществляется в установках — термических реакторах [4, 5]. Однако на стадиях проектирования и создания термических реакторов возникают затруднения, связанные с определением скоростей протекания процессов термической переработки и, как следствие, определения их производительности.

Ha энергетического баланса, основе составленного на термообрабатываемой поверхности с температурой t_n , на которую излучающей поступает тепловая энергия OT поверхности температурой t_и, получено выражение для определения скорости термической переработки порозных органических веществ, которая числено равна удельной (на 1 м² термообрабатываемой поверхности) производительности термического реактора.

Термические реакторы по температурным режимам несколько отличаются от известных теплотехнологических установках (печи, котлы и т. п.), в которых они строго регламентированы. В термических реакторах одновременно осуществляются два термических процесса – пиролиз в темературном интервале от 170 до 600 °C и газификация от 900 °C и выше. Поэтому представляет интерес исследования температурных режимов на их производительность.

Нами на основе энергетических балансов термореактора произведены теоретические исследования зависимости его удельной производительности от температуры термообрабатываемой поверхности $t_{\rm II}$ и температурного напора $\Delta t = t_{\rm II} - t_{\rm II}$. Результаты исследования представлены на рисунке.

Из графика следует, что с увеличением температуры излучающей поверхности и перепада температур производительность увеличивается, причем наблюдается более интенсивное увеличение производительности при температурах $t_{\rm u}=1000...1300$ °C и перепадах температур $\Delta t > 200$ °C, что можно объяснить меньшими

Зависимость удельной массовой производительности термического реактора от температурных режимов

затратами энергии на нагрев термогаза и перегревом влаги при температурах $t_{\rm u} > 1300$ °C.

Список использованных источников

- 1. Доклад Совета при Президенте Российской Федерации по развитию гражданского общества и правам человека по вопросам, связанным с обеспечением прав населения на охрану здоровья и благоприятную окружающую среду при утилизации отходов потребления [Электронный ресурс]. URL: http://m.greenpeace.org/russia/Global/russia/report/HRC Report 2017.pdf (дата обращения: 20.11.2018)
- 2. О региональных аспектах обращения с отходами потребления в Российской Федерации : доклад руководителя Росприроднадзора [Электронный ресурс]. URL: http://www.solidwaste.ru/docs/view/761.html (дата обращения: 20.11.2018)
- 3. Систер, В. Г. Выбор технологий обезвреживания отходов с учетом их состава и свойств / В. Г. Систер, А. Н. Мирный // Твердые бытовые отходы. 2009. № 1. С. 16–21.
- 4. Переносная установка для термической переработки твердых бытовых отходов на полигоне : пат. Рос. Федерация 2536896 : МПК 7 F 23 G 5/40 / Габитов Р. Н., Горинов О. И., Горинов П. О., Долинин Д. А., Колибаба О. Б., Самышина О. В., Семин Е. С.; патентообладатель ФГБОУ ВПО «Ивановский гос. энергет. ун-т им. В.И. Ленина» (ИГЭУ); заявл. 19.09.2013, опубл. 27.12.2014, Бюл. № 36.
- 5. Переносная установка-модуль для термической переработки твердых бытовых отходов на полигоне : пат. Рос. Федерация 2617230 : МПК⁷ F 23 G 5/40 / Горинов О. И., Колибаба О. Б., Долинин Д. А., Габитов Р. Н., Самышина О. В., Скворцов И. А.; патентообладатель ФГБОУ ВО «Ивановский гос. энергет. ун-т им. В.И. Ленина» (ИГЭУ); заявл. 31.08.2015, опубл. 24.04.2017, Бюл. № 7.