О. Н. Парменова

ФГУП «Центральный научно-исследовательский институт конструкционных материалов

«Прометей» имени И.В. Горынина Национального исследовательского центра

«Курчатовский институт», г. Санкт-Петербург

npk3@crism.ru

Научный руководитель — канд. техн. наук С. Ю. Мушникова

ВЛИЯНИЕ ХОЛОДНОЙ ДЕФОРМАЦИИ НА КОРРОЗИОННУЮ СТОЙКОСТЬ АУСТЕНИТНЫХ СТАЛЕЙ В МОРСКОЙ ВОДЕ

Исследовано влияние холодной деформации на структуру и механические свойства аустенитных нержавеющих сталей Cr—Ni, Cr—Mn—N и Cr—Ni—Mn—N композиций легирования. Определена сопротивляемость к питтинговой коррозии исследуемых сталей в зависимости от наличия деформированной структуры и мартенсита деформации.

Ключевые слова: аустенитная нержавеющая сталь, азотсодержащая сталь, питтинговая коррозия, холодная деформация, мартенсит деформации

O.N. Parmenova

INFLUENCE OF COLD DEFORMATION ON AUSTENITIC STEELS CORROSION RESISTANCE IN SEA WATER

Microstructure and mechanical properties of cold deformation Cr–Ni, Cr–Mn–N и Cr–Ni–Mn–N steels was investigated. It was shown that deformation structure or martensite influence on pitting corrosion resistance.

Key words: austenitic stainless steel, nitrogen steel, pitting corrosion, cold deformation, martensite

Стальные заготовки исследуемых сталей предварительно подвергали высокотемпературной закалке с последующим охлаждением в воде. Аустенитизацию нержавеющей азотсодержащей стали 04X20H6Г11M2AФБ осуществляли до температуры 1150 °C, а горячекатаные заготовки сталей 08X18H10T и стали марки 03X17АГ7 со «сверхравновесным» содержанием азота нагревали до 1100 °C.

Стали 08X18H10T и 04X20H6Г11M2AФБ подвергали многократной холодной прокатке при комнатной температуре с общей суммарной

[©] Парменова О. Н., 2018

степенью обжатия от 15 до 47%. Исследования микроструктуры и механических свойств показали, что Cr–Ni и Cr–Ni–Mn–N стали упрочняются без образования мартенсита деформации.

Холодная деформация при отрицательной температуре методом растяжения плоских образцов сталей 08X18H10T и $03X17A\Gamma7$ вызывала образование мартенсита деформации до $9\,\%$ в азотсодержащей стали и до $20\,\%$ в хромоникелевой стали. Для выявления мартенсита применялись магнитометрические методы (определение количества ферритной фазы и измерение магнитной проницаемости), оптическая металлография и EBSD.

Определение сопротивляемости питтинговой коррозии холодно-катаных сталей $04X20H6\Gamma11M2A\Phi B$ и 08X18H10T проводили химическим методом, заключающимся в выдержке образцов в растворе хлорного железа (10% FeCl₃·6H₂O) при комнатной температуре в течение 72 ч с определением потери массы. Испытания показали неоднозначное влияние степени обжатия при холодной прокатке на потери массы.

Определение стойкости к питтинговой коррозии образцов сталей 03X17AГ7 и 08X18H10Т проводили на базе электрохимического метода путем анодной потенциодинамической поляризации в растворе 3,5% NaCl при комнатной температуре. Появление определенного количества мартенсита деформации различного для каждой стали приводило к повышению потенциала питтингообразования, при дальнейшем росте количества мартенсита коррозионная стойкость снижалась.

Экспериментальные исследования выполнены на оборудовании Центра коллективного пользования научным оборудованием «Состав, структура и свойства конструкционных и функциональных материалов» НИЦ «Курчатовский институт» — ЦНИИ КМ «Прометей» при финансовой поддержке государства в лице Минобрнауки в рамках соглашения № 14.595.21.0004, уникальный идентификатор RFMEFI59517X0004.