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Abstract. Coal is used all over the world to meet the energy needs of
industry and housing and communal services. The main requirements of coal
using are environmental safety and efficiency. Increasing these parameters
can be realized with the combination of a gasifier and fuel cells. The paper
includes a variant of the thermal scheme of the power plant, which uses coal
as a fuel, with its further gasification and conversion into electrical energy
in a solid oxide fuel cell (SOFC) stacks. The developed scheme differs from
traditional circuits by using a gasifier with an inhibited circulating fluidized
bed (ICFB). In addition, the anode-off gases are used in the combustion
chamber of the gasifier to maintain endothermic gasification reactions. This
technologies combination allows increasing the energy system efficiency.
The paper also includes the results of tests of an ICFB gasifier and analyze
the available electrical power of the SOFC stacks. Analysis dependence
EMF from the produced generator gas composition showed no significant
effect on the available power of the electrochemical generator. Developed
scheme allow excluding from the process the gas cleaning from tar after
gasifier, which allowed to increase the efficiency and reduce the metal
capacity of the developed equipment.

1 Introduction

Fossil fuels are used all over the world to meet the energy needs of industry and housing and
communal services. The traditional method of using fuel is to burn and receive from that
process heat and electricity. With the growth of the economy of developed countries, their
consumption will only increase, which, in conditions of limited resources, can cause
confrontation. Combustion of fossil fuels leads to an increase in emissions of pollutants into
the atmosphere, which adversely affects the environmental situation around the world [1].
Therefore, many countries at the level of state programs have been developing energy-safe
energy technologies, one of which is the fuel cell technology (FC) [2-8]. FC are
electrochemical devices designed to directly convert the chemical energy of fuel into
electrical energy [1].
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1.1 Features of fuel cells and coal gasification technologies

Low-temperature fuel cell predominantly works on hydrogen, and for their effective
operation, it is necessary to use platinum as a catalyst. In the high-temperature fuel cells can
be used as fuel the mixture of hydrogen and carbon monoxide and as the oxidizer can be dust-
free air. Therefore, the high-temperature solid oxide fuel cells are most promising. Solid
oxide fuel cells (SOFC) are high-temperature cells that operate at a temperature of 700-
900°C. For SOFC as electrolyte can be used a ceramic material based on zirconia stabilized
by yttrium (YSZ, for example, ZrO; + 8 mol.% Y>03) [21]. Advantages of SOFC allow using
them in cogeneration cycles, which will have been significantly increasing the efficiency and
environmental safety of the latter. Researchers of leading universities and companies carry
out scientific work in the field of creating effective thermal circuits and cycles based on
SOFC technology [10, 11]. Since 2000, Wirtsild has been developing 20-50kW power
systems based on planar design SOFC. In 2009, the company developed a prototype power
plant that uses 40% CHi4, 34% Nj, 26% CO biogas as fuel, seasonal changes in gas
composition amount to + 15%. The electrical efficiency of such a system is at the level of
43%, and the overall efficiency of 73-76% [11].

As a raw feedstock in thermal schemes with high-temperature fuel cells, coal is often
considered, since it is the most common type of fossil fuel. Its reserves exceed the reserves
of oil and natural gas. But when burning coal, a number of problems arise, such as ash residue,
which must be removed and disposed of, the formation of sulfur and nitrogen oxides, as well
as other harmful compounds; therefore, a significant number of technological processes and
schemes are created to effectively convert coal to gas or heat. Since the last century, the
humankind has developed schemes which use as a fuel the coal and it can produce
combustible gas by gasification [19]. Coal gasification technology is the most promising and
environmentally friendly technology in comparison with coal combustion way [12, 19]. The
most studied processes of high-temperature gasification of coal are gasification with a
mixture of H,O and O, carbon dioxide, a mixture of air and steam, hydrogen and air
gasification. Recently, with the development of science and technology, new methods of gas
gasification are being developed, one of which was described by S. Chen et al. In the
publication [14]. This is the technology of supercritical gasification of coal, biomass, and
organic waste. The essence of which is that when supercritical parameters are reached, water
begins to have sufficient density to provide a significant dissolving capacity and diffusion
higher than liquids, but with lower viscosity, which increases mass transfer. As a result, a
homogeneous and fast reaction medium for gasification can be created [15, 16]. Despite
significant potential efficiency, this technology has a number of technological drawbacks in
the implementation, such as the complexity of the equipment to achieve and maintain the
supercritical parameter, the need for equipment certification, requires a large amount of
water.

Producer gas, which generating during gasification, can be burned in boilers or
combustion chambers of gas turbines to produce heat and electricity and can be converted to
synthesis gas, which is a raw material for obtaining motor fuels, various fertilizers, synthetic
natural gas, hydrogen, methanol, etc. To achieve more efficient use of fuel, gasification
products can be used in SOFC. A team of authors led by A. T. Thattai et al. [15] carried out
a thermodynamic study on the modernization of existing stations in the Netherlands, taking
into account the inclusion of a generator in the SOFC in the circuit. Modernization of power
plants up to 40 MW in cycles of combined-cycle plants with coal gasification and SOFC
stacks is possible without large modifications of plants. The authors showed that by using
modern fuel cells and introducing a partial return of CO- from the flue gases to the cycle, it
is possible to increase the efficiency of the system by 9% and to reduce carbon dioxide
emissions by 45%.
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In the paper [18], two new cogeneration systems based on SOFC were compared. As a
fuel, either synthesis gas from the gasifier or biogas from the anaerobic digestion reactor is
used. M Yari et al. had determined that in the case of obtaining only electric energy, the
scheme with the anaerobic digestion reactor and SOFC is more effective (40.14%) than the
gasifier circuit (20.31%). But with the joint generation of electrical and thermal energy, the
efficiency of the last scheme will be 58.75%, and in the scheme using the gasification gas,
the efficiency will be 51.05%. On the other hand, the authors determined that using biogas
from anaerobic gas technology is more cost-effective than using gas from the gasifier. When
carrying out these calculations, the authors took into account the need to purify the generator
gas from the gasifier from the tar, which unambiguously has a significant effect on the
efficiency of the entire process. Tar is dangerous in that it can disable SOFC stacks [22, 23].

Consequently, the relevance of the use of synthesis gas and biogas in cogeneration cycles
with SOFCs and their high efficiency is confirmed. The above technologies are very
necessary nowadays because traditional methods of fuel use are associated with large losses
of its potential. Combining the gasification process and SOFC technology allows
significantly reduce the loss of chemical energy of the fuel, due to direct conversion to
electricity.

1.2 Advantages of combining coal gasification and solid oxide fuel cells
technologies

The main prerequisites for combining coal gasification and solid oxide fuel cells
technologies:

e  To produce the generating gas, it is necessary to supply heat to the gasification
chamber, for support endothermic reactions. On the other hand, gases leaving the anode
channel have a temperature at the level 800°C, and these gases can be used as the heat source.

e  Both for the cathode channel of the fuel cells and for the gasification chamber, the
supply of dust-free air is needed.

e In planar design solid oxide fuel cells with an anode support, the latter is made of
nickel cermet, which allows flowing in the anode channel of the reaction of water gas (shift)
CO + HzH = CO; + Hz and it increases the amount of hydrogen participating in the reaction
and the electric current will have been increasing.

e In solid oxide fuel cells, it is possible to use not only pure hydrogen, but also a
mixture of CO and Ha.

e  When gas has been burning in turbines or boiler combustion chambers in the
combustion chambers, nitrogen, which in the produced gas is 61.7% by volume, can create
NOx formed in chemical reactions during combustion. In SOFC, due to the fact that the
temperature is at 750-850° C (this is not enough for NOx formation, it is necessary from
1100° C), it allows the power plant based on SOFC with coal gasification to be safe for the
environment in comparison with traditional installations of this type

2 Methods
2.1 The thermal circuit of the SOFC power plant with circulating fluidized bed

gasifier

To create the most effective heat scheme based on two technologies, special attention should
be paid to choosing a gasifier. In most cases, the produced generator gas contains tar, which
requires the additional cleaning unit. Therefore, for the new power plant, it was decided to
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use the coal gasification technology, which was developed and described Dubinin et al. in
detail in [12]. The diagram of this gasifier is shown in Fig. 1.

The operation of this gasifier is as follows. Inert spherical particles had placed in a retort.
In the internal retort 18 the coal dust had been burning to supply the necessary amount of
heat for gasification processes. In the annular gap between the retorts 18 and 19 the process
of air gasification of coal had been passing. Standpipes 8 and 15 are provided for circulating
the electrocorundum. To allow the endothermic reaction to proceed in the gasification
chamber 11, the heated electrocorundum which was heated in the chamber 16 had been
supplied to the fluidized bed 21 through the riser 15. Elecrocorundum was returned to the
fluidized bed 5 in the combustion chamber for reheating using riser 8 after cooling. Steady
circulation of particles between the chambers was carried out due to the difference in the
hydraulic resistance of the circulating layer blocked by the spherical particles and the
elecrocorundum column in the risers 8 and 15. The coal dust was fed into the combustion
chamber by the nipple 25 and the air by the nipple 1. The combustion products were removed
at the outlet 14. Coal in the gasification chamber entered the fitting 7, the air on the fitting
22.

1 — air inlet for combustion; 2, 6 — air
distribution grate the cap; 3 — fitting for
removal of ash and slag; 4 — device
(gate) for regulating the consumption of
electrocorundum by lowering risers; 5,
21— pseudo-fluidized bed; 7 — fitting for
feeding the coal in the gasification
chamber; 8 — standpipe; 9 — a tube for
measuring the temperature along the
height of the gasification chamber; 11 —
spherical particles in the gasification
chamber; 12 — gasification products
exit; 13 — A tube for measuring the
temperature along the height of the
combustion chamber; 14 — combustion
products outlet; 15 — riser standpipe into
the combustion chamber; 16 — spherical
particles in combustion chamber;
17 — device for taking samples of
gasification products; 18 — internal
retort; 19 — outer retort; 20 — lifting
risers; 22 — air inlet for gasification; 23
— partition; 24 — ash outlet; 25 — coal
dust feeding into the combustion
chamber

Fig 1. Experimental bench for air gasification of coals in the inhibited circulating fluidized bed

During the experiments, it was found that with the consumption of coal and air in the
combustion chamber 4.4 kg / h and 22 m? / h, and with the consumption of coal and air in the
gasification chamber of 24 kg / h and 34.9 m3/ h in the gasification products there were no
tar, and particles of the fraction 150-200 um carried away from the combustion chamber had
a dry ashless mass of ~10%, in the fraction 40-80 um ~ 15%.

The gases which leaving the anode channel contain a small number of combustible
components such as CO and Ha, in addition, they have a temperature of 750-800 ° C.
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Therefore, they can be catalytically burned to support endothermic reactions in the
production of the generator gas. Since the gasifier with inhibited circulation bed has a
combustion chamber, it was decided to direct the gases leaving the SOFC into the internal
retort 18, where coal dust was previously burned, which will be filled with an aluminum-
based catalyst.

Based on the experience of using SOFC stacks with anode-supported cells and a gasifier
with IFCB, a scheme of a power plant using coal as a fuel was developed. The scheme of this
power unit is shown in Fig. 2
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Fig 2. Scheme of the coal-fired power plant with a gasifier with a inhibited fluidized bed
and solid oxide fuel cell stacks: 1-device for drying incoming coal, 2 coal crusher, 3-
gasifier, 4- mechanical filter, 5- SOFC stacks, 6- air mechanical filter, 7-blower, 8-ash
collector, 9-cylinder with a SOFC protective mixture (95% Ar / 5% H2), 10- heat
exchanger for heating air entering the cathode channel.

In the proposed scheme, the coal enters the drying chamber 1 to remove moisture and
then feeding the grinding mill 2 for grinding into a fraction suitable for gasification. The
generated generator gas passes through the mechanical filter 4 and enters the anode channel
of the fuel cell 5. The air pre-cleaned of the dust in the mechanical filter 6 is supplied by the
blower 7 for the heating in the heat exchanger 10, after which it is divided into two streams,
one of which is fed to the gasifier with ICFB and the second into the cathode channel. The
products of electrochemical reactions leaving the SOFC are feeding to the combustion
chamber of the gasifier, where all unreacted components are catalytically burned. After
oxidation, the exhaust gases are sent to preheat the incoming air and to dry the coal.

Table 1 shows the composition of the generator gas as a function of temperature in the

gasifier [12].
Table 1. The composition of the producer gas as a function of temperature in the gasifier
Temperature Calorific
p(,c | co 002 N2 CHa Cco Ha value,
MJ/m3
760 10.90% | 4.80% | 65.80% 0.80% 12.20% 5.50% 2.4
825 7.70% 3.10% | 61.70% 1.20% 19.50% 6.80% 3.6
875 7% 2.60% | 60.80% 0.90% 22.50% 6.20% 3.8
900 4.50% 2.10% | 59.80% 0.40% 26% 7.20% 4.2
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2.2 Calculation of the available electrical power of SOFC stack

Based on the experimental data obtained, calculations can be made to determine the power
of the SOFC stack.

In the solid oxide fuel cell on the anode, the adsorbed and catalytically activated fuel
molecule, for example H; or CO, interacts with the oxygen ion entering the electrolyte from
the cathode channel, resulting in the formation of H,O or CO, molecules and free electrons
appear [1]

Ho+0%= H,0+2e~; CO+ 0> =CO+2¢". (1)

Since the fuel cells usually operate under isobaric-isothermal conditions, the calculation
of the EMF is carried out proceeding from the fact that for these conditions the maximum
possible work that can be obtained in the system with a reversible chemical reaction is equal
to a decrease in the Gibbs free energy. In this case, in order to calculate the EMF of cell,
depending on the partial pressures of the reacting gases and reaction products, it can be used
the following equation

RT

=E"- I:Zlnplfk, (2)

€
e

E? — standard EMF element for current-forming reactions [1]; p, — partial pressure

components of the mixture; v, — the stoichiometric coefficient of the component in the

reaction: positive for the products, negative for the consumables; T — absolute temperature,
K; R = 8,314 J / (mol - K); n. — number of electrons participating in a given reaction, for
example, ne = 2.

3 Results and Discussion

Based on reactions kinetics, electrode designs and experimental data, it is determined that the
main contribution to the SOFC EMF is made by the hydrogen oxidation reaction, and the CO
present in the synthesis gas contributes about 3% to the EMF cell [1]. In Fig. 3 shows the
dependence of the SOFC EMF on the temperature in the gasifier for the case in which the
EMF is obtained only from the hydrogen reaction and in the case of CO participation. It can
be seen from the graph that the EMF of a single element decreases with increasing

temperature.
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Fig. 3. Dependence of EMF on the terﬁperature

at the outlet from the gasifier. Fig. 4. Dependence the power without loss

from the temperature at the outlet of the gasifier

The power received from an electrochemical generator based on SOFC depends on the
number of connected cells and stacks, as well as on the current and the losses. Preliminary
power estimation was carried out for existing and tested in the UIC, LLC of planar design
SOFC stack with a supported nickel anode [20] based on the following parameters: two fuel
cells in each of which 40 units each. The parameters of the current are determined from the
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experimental data taking into account the technical characteristics of the equipment. Figure
4 shows the available electrical power (excluding activation, concentration and ohmic
losses), which can be obtained from fuel cells considering the concentrations of combustible
components in the generator gas. It can be seen from the graph that in the temperature range
from 750 to 900°C the composition of the generator gas does not introduce any significant
changes in the power of SOFC stacks. This makes it possible to regulate the operation of the
gasifier in a sufficiently large temperature range.

Conclusions

e As a result of the analysis of the characteristics of coal gasification and SOFC
technologies, several significant aspects have been identified that allow them to be
successfully combined in a single thermal scheme with high efficiency and safety.

e Using the gasifier with a fluidized inhibited fluidized bed makes it possible to exclude the
generator gas purification module from tar, it increases the efficiency of the energy system
and makes it more reliable.

e Using of products from SOFC in the combustion chamber of the gasifier lowers the
consumption of coal and supports the endothermic reactions in the gasification zone.

e Analysis dependence EMF from the produced generator gas composition in the range
from 750 to 900 ° C, showed no significant effect of this parameter on the available power
of the electrochemical generator in the specified temperature range, which allows using more
control regimes.
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