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Abstract. Motivated by important industrial applications we consider the growth prosess of
solid particles in a supersaturated (supercooled) system with allowance for a crystallizer. The
particle-radius distribution function satisfies the second order kinetic equation supplimented by
different boundary conditions. An exact steady-state analytical solution is found. We show that
two different types of analytical solutions for the kinetic equation exist.

1. Introduction
The process of growth of a new phase in metastable systems can be divided into three stages:
nucleation, growth of critical nuclei and relaxation of a new phase to equilibrium. The division
is conditional, because all these processes occur simultaneously. Modeling the processes of
formation of a new phase is important both for fundamental research in the field of phase
transitions and for industrial applications. The particle size distribution can have a decisive
influence on the properties of the systems in the production of powder materials from melts,
precipitation from solutions, synthesis of colloidal solutions and so on.

In this study, the process of formation and growth of particles of a new phase under stationary
conditions is considered. Such conditions can be ensured when the particles of the solid phase
are continuously removed from the liquid and the supersaturation (supercooling) is artificially
maintained. The removal of particles can be realized both as a result of processes of precipitation
of large particles due to sedimentation, fragmentation and sedimentation of large volumes of the
new phase, and also due to artificial deposition, for example, during centrifugation.

The problem of stationary distribution was previously considered by Buevichi and Mansurov
[1]. However, they considered the determenistic growth of solid crystals without their
fluctuations. The present paper takes into account random processes in the Fokker-Planck
equation for the particle-radius distribution function.

2. Model
It is assumed that the physical properties of both the solution and the crystals are independent of
supersaturation (hereinafter, supersaturation will also be understood as supercooling) and time.
Supersaturation is homogeneous throughout the reservoir volume. The nucleation kinetics is
stationary. This is permissible as the time of nucleation process, as a rule, is several orders of
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magnitude smaller than the time of continuous crystallization for any real supersaturation. The
size of spherical crystals is determined by using one parameter, their radius.

The crystal radius is a random variable satisfying the stochastic equation [2]

dr = g(t, r)dt+
√

2DW, (1)

where t is the growth time, g(t, r) is the growth rate of a particle that has no oscillations, D is a
function that expresses the speed of free oscillations (the coefficient of mutual Brownian diffusion
of a particle) and W is the Wiener process. The distribution function f of particles of radius r
for the stochastic equation (1) considering the crystallizer (crystal derivation) is described by a
kinetic equation of the Fokker-Planck type [3].

∂f

∂t
+

∂

∂r
(gf) + h(r)f =

∂

∂r

(
D
∂f

∂r

)
, r > r∗. (2)

The function h(r) describes the rate of crystal extraction, r∗ is a critical radius. The exact
definition of D is a difficult problem in statistical physics. However, in the first approximation
one can assume that D is proportional to the nucleation rate of growth [3, 4]

D = d1g(t, r), (3)

where d1 is a coefficient.
The rate of particle growth g can be found from a problem of the Stefan type in a metastable

system [4, 5]. The result can be expressed in the form

g(t, r) =
β∗ 4 θ

1 + β∗qr
, q =

LV
λl

(4)

if the system is a supercooled melt and in the form

g(t, r) =
β∗ 4 C

1 + β∗qr
, q =

Cp
Dl

(5)

if the system is a supersaturated solution. Here, β∗ is the kinetic coefficient, λl and Dl

are the temperature conductivity and diffusion coefficients, 4C is the supersaturation, 4θ
is the supercooling. The heat (mass) balance equation for the dimensionless supercooling
W = 4θ/4 θ0 (supersaturation W = 4C/4 C0) can be written as [4].

w(τ) = 1− b
∫ ∞
r∗

r3f(τ, t)dr, τ > 0, (6)

where b = 4πLV /(3ρmCm 4 θ0) if the system under consideration is a supercooled melt, and
b = 4πCp/(34 C0) if the system is represented by a supersaturated solution. Here LV is the
latent heat parameter, Cp is the concentration at saturation, ρm and Cm are the density and
specific heat of the mixture and subscript 0 designates the initial state.

For a complete investigation of the problem, it is necessary to set the initial and boundary
conditions. As the initial condition for the distribution function, it is usually assumed that there
are not nuclei in the system:

f = 0, τ = 0. (7)

The initial condition for w becomes

w = 1, τ = 0. (8)

The first boundary condition for the density distribution function takes the form
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gf −D∂f
∂r

= I(w), r = r∗, τ > 0. (9)

The empirical expressions for the nucleation rate which are frequently used in analyzing many
industrial processes can be expressed as

I = I∗(4θ)p = (I∗(w4 θ0)
p (10)

for supercooled melts and

I = I∗(4C)p = (I∗(w4 C0)
p (11)

for supersaturated solutions. Expressions (10) and (11) are frequently called the Meirs nucleation
kinetics. It follows from the normalization condition that the distribution function vanishes for
sufficiently large r.

Generally speaking, two boundary conditions are possible. The first of them reflecting the
distribution function decaying is

f = 0, r →∞. (12)

The second one describes the case when the density distribution function vanishes for a finite r

f = 0, r = r0. (13)

3. Steady-state regime
We are dealing with two processes: the formation and growth of crystals and their removal.
These processes can balance each other. Thus, if the supersaturation is artificially maintained,
it is possible to achieve the existence of a solution in the form of a stationary (time-independent)
distribution-density function. The equation becomes an ordinary differential equation, and the
initial conditions are no longer required. I this paper, we assume that the rate of the crystal
removal is independent of their radii. The experiment shows that the crystal growth rate g is
frequently constant. In this case, the kinetic equation takes the form

D
d

dr

(
df

dr

)
− g d

dr
(f)− hf = 0, (14)

d

dr

(
df

dr

)
−A d

dr
(f)−Bf = 0, A =

g

D
, B =

h

D
. (15)

The solution of this equation has the form

f = C1e
λ1r + C2e

λ2r, (16)

λ1 =
A+

√
(A2 + 4B)

2
, λ2 =

A−
√

(A2 + 4B)

2
, (17)

where C1 and C2 are determined from the boundary conditions, consequently two cases are
possible.

In the first case, (12), we have
C1 = 0, (18)

C2 =
I

g(1− d1λ2)eλ2r∗
. (19)
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In the second case, (13), we get

C1 = − Ieλ2r0

g((d1λ1 − 1)eλ2r0eλ1r∗ − (d1λ2 − 1)eλ1r0eλ2r∗)
, (20)

C2 =
Ieλ1r0

g((d1λ1 − 1)eλ2r0eλ1r∗ − (d1λ2 − 1)eλ1r0eλ2r∗)
. (21)

The analytical solutions (16)-(21) can be rewritten in the dimensionless form as

F (x) =
f

C2
= Ceµ1x + eµ2x, (22)

C =
C1

C2
, x =

r

d1
, Λ =

4B

A2
, (23)

µ1 =
1

2

(
1 +

√
1 +

4B

A2

)
, µ2 =

1

2

(
1−

√
1 +

4B

A2

)
. (24)

Here the reduced constant C is introduced as

C = 0 (25)

in the case of boundary conditions (18), (19) and

C = −e(µ2−µ1)x0 (26)

in the case of boundary conditions (20), (21).

4. Conclusions
Figures 1 and 2 show graphs of the distribution function for different boundary conditions. Of
special interest is the case when the distribution function vanishes for finite r = x0d1. As we
can see, the function F in Figures 1 and 2 does not have extremal points and is a monotonically
decreasing function. Thus, we come to the conclusion that under stationary conditions with
increasing radius of the nuclei the probability of finding such nuclei in the crystallizer decreases.
The difference between two boundary conditions (12) and (13) shown in Figures 1 and 2 consists
in the fact that F = 0 at x = x0 in Figure 2 while F → 0 at x→∞ in Figure 1. This is connected
with different boundary conditions (12) and (13) initially used in our model. Generally speaking,
both of them are possible if the system approaches to its steady-state. This, in turn, depends,
first of all, on system equilibria and how it tends to them. It depends on the level of system
supercooling (supersaturation) as well. In addition, Figure 2 demonstrates the presence of
inflection points appearing as a result of the boundary condition (13).

Note that increasing Λ (withdrawal rate h) decreases the distribution function and the number
of crystals as is seen from comparison of the left and right panels in Figures 1 and 2.

The distribution funstion behavior illustrated in Figures 1 and 2 is a direct consequence of
the second spatial order of the kinetic equation (2) and corresponding boundary conditions.
Indeed, if we are dealing with the first order kinetic equation the distribution function breaks
down at a finite crystal radius [6, 7]. An important point is that the distribution function (22)
is always decreasing because its second derivative is negative at any x.
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a) b)

Figure 1. Dimensionless distribution function versus dimensionless cristal radius at a) Λ = 0.5
and b) Λ = 0.3 plotted for the case of boundary condition (12).

a) b)

Figure 2. Dimensionless distribution function versus dimensionless cristal radius at a) Λ = 0.5
and b) Λ = 0.3 plotted for the case of boundary condition (13), x0 = 30.
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