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Abstract. A method based on the boundary integral approach to the phase interface
propagation is used to obtain the Horvay and Cahn solutions. An elliptical paraboloid as
one of the crystal (dendritic) shapes growing under the steady state conditions is derived from
the boundary integral.

1. Introduction
The dynamics of phase interfaces plays a very important role in different phase and structural
transformations and leads to various types of pattern formation in materials [1–7]. The Stefan-
like problems occurring in the presence of moving boundary problems [8–28] may be mentioned
as an important class of such evolutionary tasks.

The boundary integral method represents one of the useful approaches to describe the
time-dependent moving boundary problems. This technique was developed for the first time
by Nash [29] and Nash and Glicksman [30] in their pioneering papers. This method leans
upon a single integral equation for the interface function, which is derived on the basis of the
Green’s function technique. Langer and Turski [31,32] developed the boundary integral method
to describe a chemical diffusion problem in two-phase solid/liquid, solid/solid and fluid/fluid
systems. Recently, their theory was extended for the description of binary non-isothermal
mixtures by Alexandrov and Galenko in [33]. Note that the integral equation for the interface
function represents the basis for stability and selection problems [34–40].

It is well-known that in many cases the growing dendrites are non-symmetrical in their shapes
and cannot be described by means of the Ivantsov solutions [39,41]. In this case, one can use the
Horvay and Cahn solutions describing the non-symmetrical shape of a dendritic tip [42–44]. The
present paper connects the Horvay and Cahn solutions with the boundary integral theory [33].
Namely, we discuss below how to derive the Horvay and Cahn solutions describing the elliptical
paraboloid from the boundary integral method [33].

http://creativecommons.org/licenses/by/3.0


2

1234567890

STPM2017  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 192 (2017) 012025 doi:10.1088/1757-899X/192/1/0120251234567890

STPM2017  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 192 (2017) 012025 doi:10.1088/1757-899X/192/1/012025

2. Equation of the interface motion and its analysis for elliptical paraboloid
Horvay and Cahn [42] obtained a form of an isothermal dendrite that has an elliptical cross
section. The surface of the dendrite in dimensionless coordinates is given by

x2

ω − b
+

y2

ω + b
= ω − 2z, (1)

where 2DT /V = ρ/PT is the length scale and PT = ρv/2DT is the growth Péclet number (V and
ρ represent the dendrite tip velocity and diameter of its any cross section (or the average value
of dendritic tip curvature radii), and DT is the thermal diffusivity). The interface corresponds
to ω = PT . Here b determines the aspect ratio of the elliptical cross-section of dendrite. For
b = 0 the cross-section is circular; we will assume |b| < PT . Eq. (1) is actually a symmetrized
version of the corresponding expression given by Horvay and Cahn, with dimensionless radii of
curvature PT −b in the x−z plane and PT +b in the y−z plane. Thus, the average dimensionless
radius of curvature is PT [44]. In dimensional form this equations transforms to

x2d
ωd − bd

+
y2d

ωd + bd
= ωd − 2zd, (2)

where ωd = ωρ/PT and bd = bρ/PT and subscript d designates the dimensional variables and
parameters. An arbitrary deformed solid-liquid interface then propagates in the z-direction and
is defined by the function zinterface = ζ(x, t), where t stands for the time. The dimensionless
undercooling as a function of PT in the three-dimensional case can be written out as [33]

∆− dc
ρ
K − βV

(
1 +

∂ζ(x, t)

∂t

)
= ITζ , (3)

where (in dimensionless variables)

ITζ = P
3/2
T

∞∫
0

dτ

(2πτ)3/2

∞∫
−∞

∞∫
−∞

d2x1

[
1 +

∂ζ(x1, t− τ)

∂t

]

× exp

{
−PT

2τ

[
|x− x1|2 + (ζ(x, t)− ζ(x1, t− τ) + τ)2

]}
. (4)

Here ∆ = (TM − T∞)cp/Q is the dimensionless undercooling, TM is the freezing temperature
of the planar front, T∞ is the liquid phase temperature far from the moving interface, Q is
the latent heat released per unit volume of the solid phase, cp is the specific heat β is the
kinetic coefficient, variables x, x1 and ζ are measured in units of ρ whereas variables t and τ are
measured in units of ρ/V . In dimensional coordinates, when the elliptical paraboloid does not
change its shape and moves with the constant velocity V (i.e. ∂ζ(x, t)/∂t = 0), Eq. (4) takes
the following form

ITζd =

(
PT
2πρ

)3/2 1√
V

×
∞∫
0

dτ

τ3/2

∞∫
−∞

∞∫
−∞

d2x1 exp

{
−PT

2τ

1

ρV

[
|x− x1|2 + (ζ(x, t)− ζ(x1, t− τ) + τV )2

]}
. (5)

Here ITζd denotes the integration over dimensional coordinates. Taking into account expressions
(2) and (5) one can get

ITζd =

(
PT
2πρ

)3/2 1√
V
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×
∞∫
0

dτ

τ3/2

∞∫
−∞

∞∫
−∞

exp

{
−PT

2τ

1

ρV

[
(x− x1)2 + (y − y1)2

+

(
x21 − x2

2(ωd − bd)
+

y21 − y2

2(ωd + bd)
+ τV

)2
dx1dy1. (6)

Replacing two integration variables τ and y1 by ω1 and z1 as

τ =
(x− x1)2

2ω1
, y − y1 = (x− x1)z1, (7)

we get

ITζd =

(
PT
πρ

)3/2 1

2
√
V

∞∫
0

dω1√
ω1

∞∫
−∞

exp(−PTω1

ρV
(1 + z21))dz1

×
∞∫
−∞

exp

{
−PTω1

ρV

(
− x1 + x

2(ωd − bd)
− z1(2y − z1(x− x1))

2(ωd + bd)
+
V (x− x1)

2ω1

)2
}

dx1. (8)

Integration of the right-hand side of Eq. (8) over x1 leads to

ITζd =
PT (ωd + bd)

πρ

∞∫
0

exp(−PTω1
ρV )dω1

ω1

∞∫
−∞

exp(−PTω1z21
ρV )dz1

z21 + (ωd + bd)(
V
ω1

+ 1
ωd−bd )

. (9)

Now it is possible to integrate the right-hand side of the Eq. (9) over z1

ITζd =
PT
√
ωd + bd
ρ

∞∫
0

exp
(
PT
V ρ(ωd + bd)

(
V + ω1

(ωd−bd

)
− PTω1

V ρ

)
√
ω1

√
V + ω1

(ωd−bd

× erfc

(√
PT
V ρ

(ωd + bd)

(
V +

ω1

ωd − bd

))
dω1. (10)

Here it has been taken into consideration that [45]

∞∫
0

exp(−µ2u2)du
u2 + β2

=
π

2β
erfc(βµ). (11)

Replacing the variable ω1 by u = 1√
V

√
V + ω1

ωd−bd , we obtain

ITζd =
2PT
ρ

√
ω2
d − b2d exp(

PT
ρ

(ωd − bd))J(ωd), (12)

where

J(ωd) =

∞∫
1

exp
(
PT
ρ 2bdu

2
)

erfc
(
u
√

PT
ρ (ωd + bd)

)
du

√
u2 − 1

. (13)
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Further, applying the method of differentiation and integration of J(ωd) and keeping in mind
that

∞∫
1

exp(−µu)du√
u− 1

=

√
π

µ
exp(−µ), (14)

we get

ITζd =
PT
ρ

√
ω2
d − b2d exp

(
PTωd
ρ

) ∞∫
ωd

exp
(
−PT

ρ t
)

dt√
t2 − b2d

. (15)

At the interface, ωd = ρ, one obtains

ITζd =

√
P 2
T − b2d

P 2
T

ρ2
exp(PT )G(PT ), (16)

where

G(PT ) =

∞∫
PT

exp(−y)dy√
y2 − b2d

P 2
T
ρ2

, (17)

and

cp(TM − T∞)

Q
= ITζd. (18)

This relation shows that the undercooling ∆T = TM − T∞ connects two unknown dendrite
parameters: ρ and V of the paraboloid. Our solution (16) transforms to the Horvay-Cahn
two-fold solution [44] after returning to the dimensionless value b = bdPT /ρ

ITζ = ITζd =
√
P 2
T − b2 exp(PT )

∞∫
PT

exp(−y)dy√
y2 − b2

. (19)

For b = 0, the cross-section is circular and one recovers the Ivantsov’s solution [39,41].
The thermal field can be expressed as [41,44]

Td(ω) = (TM − T∞)
G(ω)−G(PT )

G(PT )
. (20)

The function ω = ω(x, y, z) is given by Eq. (1). This equation has three roots, but only one of
them is positive at all possible values of parameters. It can be found from the Cardano’s formula

ω(x, y, z) =
2z

3
+

3

√√√√−q +
√
q2 + 4p3

27

2
+

3

√√√√−q −√q2 + 4p3

27

2
, (21)

where

q(x, y, z) =
4

3
zb2 − bx2 + by2 − 16

27
z3 − 2

3
z(x2 + y2), (22)
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Figure 1. The temperature as a function of dimensionless variable ω at different values of
parameter b.

Figure 2. The temperature as a function of parabolic variable ξ at the fixed values of b = 0.009,
η = 1 and ϕ = π.

and

p(x, y, z) = −
(

4

3
z + b2 + x2 + y2

)
. (23)
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The parabolic coordinates are often used to describe the dendritic growth. The relations
between the parabolic coordinates (ξ, η, ϕ) and the Cartesian coordinates (x, y, z) are

x = ξη cosϕ, y = ξη sinϕ, z =
1

2
(ξ2 − η2). (24)

For a steady-state isothermal dendrite growing in the z-direction, the dendrite surface has the
form ξ = f(η, ϕ). The elliptical paraboloid in the parabolic coordinate system is given by

ξ2η2
[

cos2 ϕ

ω − b
+

sin2 ϕ

ω + b

]
= ω − ξ2 + η2. (25)

This relation defines ω as a function of the parabolic coordinates

ω(ξ, η, ϕ) =
ξ2 − η2

3
+

3

√√√√−q1 +
√
q21 +

4p31
27

2
+

3

√√√√−q1 −√q21 +
4p31
27

2
, (26)

where

q1(ξ, η, ϕ) =
2(η2 − ξ2)3

27
+

(η2 − ξ2)(b2 + ξ2η2)

3
+ b2(ξ2 − η2)− ξ2η2b(cos2 ϕ− sin2 ϕ), (27)

and

p1(x, y, z) = −
(
ξ2η2 + b2 +

(η2 − ξ2)2

3

)
. (28)

3. Conclusions
Figures 1 and 2 demonstrate the solution given by Eq. (20) for the ice-water system (TM = 0oC,
T∞ = −1oC, PT = 0.01).

Let emphasize in conclusion the main output of our study. By leaning upon the previously
developed theory of the thermo-solutal boundary-integral method [33], we have sewed together
the Horvay and Cahn analytical solutions derived for the elliptical paraboloid [42] and the
boundary integrals given by expressions Eq. (3) and Eq. (4) [33]. The temperature distribution
in the liquid phase for the elliptical paraboloid is analyzed and illustrated as well.
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