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Abstract. This research focuses on two-phase thermal control systems, namely loop 

thermosyphons (LTS) filled with nanofluids, and their use as LED cooling devices. The behavior 

of the fluid in the thermosyphons and the mechanisms explaining the possible impact of 

nanoparticles on thermal properties of the working fluid as well as the processes in the LTS are 

addressed. Nanoparticle distribution in the nanofluid, methods of preparation of nanofluids and 

nanofluid degradation processes (aging) are studied. The results are obtained from a set of 

experiments on thermosyphon characteristics depending on the thermophysical properties of the 

working fluid, filling volume, geometry and materials of radiators. The impact of nanofluids on 

heat-transfer process occurring inside thermosyphon is also studied. Results indicate strong 

influence of nanoparticles on the thermal properties of the thermosyphons, with up to 20% 

increase of the heat transfer coefficient. Additionally, a method of calculating the hydrodynamic 

limit of the LTS is proposed, which allows for estimation of the maximum heat flux that can be 

transferred by means of the LTS. Possible ways for further improvement of the model are 

proposed. The nanofluids are shown to be effective means of enhancing two-phase systems of 

thermal management.  

1.  Introduction 

Two-phase heat transfer systems are widely used in different technical devices, especially in spacecraft 

thermal control systems, as well as in electronic devices such as microprocessors, semiconductor power 

electronics, modern powerful laser sources, optoelectronic devices, light-emitting diode (LED) lighting 

[1-3], etc.  

Recent findings indicate that a new type of liquids with addition of metal or metal oxide nanoparticles 

may enhance thermal characteristics of two-phase systems. Over the last 12 years, extensive studies of 

nanofluids have been conducted containing both positive and negative results of the use of nanoparticles 

in heat transfer systems. Effect of nanoparticles on the system parameters is characterized by change of 

thermal resistance, critical heat flux, heat transfer coefficient, thermal conductivity, intensification of 

boiling and changes in the operating mode of the system. Some studies demonstrate viscosity increase, 

reduction of flow resistance, and change of wetting angle along with changes in flow mode between 

laminar and turbulent [4-9].  

However, the conducted studies primarily concern conventional thermosyphons or focus on defining 

thermal properties of nanofluids, thus leaving LTS outside the scope of research. 

Considering the above, we have set the following objectives for our study:  

1. Examine nanofluids as a working fluid for thermal-management devices; compare the obtained 

results with the performance of clear working fluids;  
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2. Study nanoparticle distributions;  

3. Develop a thermal control system based on loop thermosyphons for LEDs with a flat cylindrical 

evaporator and front heat input;  

4. Optimize working fluid volume, come up with recommendations for working fluid choice and 

devise a filling procedure for nanofluids (omitted from this short version); 

5. Compute the maximum heat flux based on the hydrodynamic limit using MathCad.  

2.  Experimental apparatus 

In order to determine the change in thermal properties of the system, in this work we utilize temperature 

measurement by thermocouples at specific locations throughout the thermosyphon. Using thin, 

lightweight copper-constantan thermocouples allows for placing them at otherwise hard-to-reach 

locations of the thermosyphon. Temperature recording has been conducted as follows: After applying 

voltage and measuring power, the data acquisition system began to take temperature over a period of 

time. Then, when the temperature stabilized, the experimental run continued for one hour, with the 

temperature still being recorded every second by the DAC (Owen TRM-148). Finally, after the 

experiment was finished, the measured temperatures were averaged and standard deviation was 

calculated. For all experimental runs, the total error was less than ±0.2 °C.  

 

 

Figure 1. Conceptual scheme of experimental setup for temperature measurements at specific locations 

of the thermosyphon. 1 – heater, 2 – thermal isolation, 3 – filling/evacuation; A, B, C – thermocouple 

locations; DAC – data-acquisition system. 

 

Figure 1 illustrates the schematic experimental setup and location of thermocouples. Experimental 

study assumes obtaining temperatures at specific points on a loop thermosyphon depending on the 

nominal load of LEDs or heat load, both measured in Watts. The heat load is intended to simulate the 

actual LED heat flux. The following locations on the thermosyphon have been selected: A – temperature 

of the heater or diodes, located between the evaporator and the heater 𝑇ℎ; B – vapor temperature at the 

top point of the evaporator 𝑇𝑣; C – liquid temperature by the condenser pipes at the evaporator's entrance 

𝑇𝑙. 
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Preparation of nanofluid included 

the following 3-step procedure. First, 

laser-ablated highly dispersed 

powder of Fe2O3 was added to bi-

distilled water in a cylinder. The 

resulting mixture was placed into an 

ultrasonic dispergator for 10-15 

minutes. During dispergation, in 

order to cool down the mixture and 

prevent boiling, the cylinder was 

wrapped with pipes flowing cold 

water, since boiling causes 

nanoparticles to exit the liquid and 

condense elsewhere in the 

environment. Total ultrasonic power 

was 5kW. Finally, in order to assess 

the quality of the prepared nanofluid, 

the mixture was placed into the laser-

based particle size analyzer 

SHIMADZU SALD-7101, which 

measured the particle size 

distribution. The measurement results are presented in figure 2. The Fe2O3 nanoparticle powder has been 

selected for its non-reactive nature and affinity to the materials used in the system. This procedure was 

repeated for each solution. Prepared solutions had the following mass concentrations: w = 2.0%, 1.5%, 

1.0%, 0.8, 0.3%.  

3.  Results and discussion 

3.1.  Calculation of maximum heat flux of the thermosyphon 

The calculation of the hydrodynamic limit was based on the necessary working condition that causes 

the circulation of working fluid in thermosyphon. This condition can be written as the inequality 

Δ𝑃𝑔 = (𝜌𝑙 − 𝜌𝑣)𝑔𝐻 ≥ ∆𝑃𝑣 + 𝑃𝑙  , where 𝜌𝑙 – density of liquid phase; 𝜌𝑣 – density of vapor phase; 

𝐻 – the height difference between the evaporator and the condenser (gravity force that actually returns 

the liquid to the evaporator); ∆𝑃𝑣 and 𝑃𝑙 are the pressure drop in liquid phase and vapor phase, 

respectfully.  

Using Hagen-Poiseuille equation for laminar flow of vapor and Fanning equation for turbulent flow 

and considering formulas for local and integral pressure drop coefficients (left out), the final equation 

will be: 

𝑄(𝐻) =

{
 
 

 
 −(𝐸 + 𝐷) + √(𝐸 + 𝐷)

2 + 4(𝑂 + 𝑃) ∙ [(𝜌𝑙 − 𝜌𝑣) ∙ 𝑔 ∙ 𝐻 ∙ 0,75]

2 ∙ (𝑂 + 𝑃)
   at  𝑅𝑒 ≤ 2100

−(𝐶 + 𝐷) + √(𝐶 + 𝐷)2 + 4(𝑂 + 𝑃) ∙ [(𝜌𝑙 − 𝜌𝑣) ∙ 𝑔 ∙ 𝐻 ∙ 0,75]

2 ∙ (𝑂 + 𝑃)
  at  𝑅𝑒 > 2100,

 

where  
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Figure 2. Particle size distribution in nanofluid. 

Mean size is 36 nm. 
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The equation above includes physical properties of liquid and vapor phases, namely viscosity, 

density, heat capacity, and enthalpies of condensation and vaporization. Therefore, knowing the listed 

properties, it's possible to obtain functional dependency 𝑄 from 𝐻 for laminar and turbulent flow 

respectively. Figure 3 presents the graph plotted for a set of commonly used working fluids as a function 

𝑄(𝐻). As apparent from the graph, the selected model adequately describes the processes of heat and 

mass transfer in thermosyphon even though the model doesn’t take into account boiling process and 

leaves out certain details of heat transfer mechanisms that occur at liquid-vapor phase boundaries. 

Possibly, employing the finite-element (FEM) method alongside the finite-volume method (FVM), 

depending on modeling situation, can significantly improve the consistency of the model with the 

experimental results.  

3.2.  Two-phase thermosyphons with nanofluids  

To determine the influence of nanofluid on the process occurring in the thermosyphon, we have 

calculated the heat transfer coefficient using the equation 𝛼 = 𝑄 ∕ 𝑆 ∕ (𝑇ℎ − 𝑇𝑣)  , where 𝑄 – the applied 

heat; 𝑆 – the surface area of heat input 19.2∙10-4 m2; 𝑇ℎ and 𝑇𝑣 are the heater and vapor temperatures at 

the locations A and B (Fig.1), respectively.  

The experimental results show that there's a substantial increase of the heat transfer coefficient (see 

Figure 4). For concentration w=2.0% the increase is as high as 20%, taking into account that 

thermosyphon itself is a very effective system. A possible explanation of how the nanoparticles may 

cause the heat transfer coefficient increase is presented in Figure 5.  
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Figure 3. Maximum heat 𝑄 that can be transferred by LTS as 

a function of the height difference 𝐻 between the evaporator and the condenser for a set of commonly 

used working fluids. 
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Nanosystems are subject to processes of degradation due to high values of free energy, which can be 

reduced via an agglomeration process. Some of the studies have shown a degradation over time (aging) 

process caused by aggregation of nanoparticles in the solution and their settling. To estimate the possible 

negative impact of these processes, the experiments were repeated the next day and in one week. No 

difference between the one-week and one-day results has been observed, so the final results include only 

the one-day degradation dependency.  

Figure 6 presents the process of the nanofluid degradation over time. Indeed, obtained results show 

that nanofluids are subject to steady decrease in thermal conductivity, most probably due the process of 

aggregation and settling of nanoparticles.  
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Figure 4. Nanofluid's influence on the heat transfer coefficient 𝛼 for different mass concentration w 

of nanoparticles.  

a c b 

𝑄 𝑄 𝑄 

Figure 5. Possible explanation of the heat transfer increase. a – nanoparticles have greater heat 

conductivity than liquid, and heat is conducted via Brownian motion of the particles; b – nanoparticles' 

influence on Rayleigh–Benard cells formation; c – nucleate boiling (particles act as nucleation centers); 

𝑄 is the applied heat.  
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To address this problem, an introduction of surface-active agents is proposed. Alternatively, a non-

stop operation mode is recommended for such systems. These measures can effectively prevent 

nanoparticles from segmentation, thereby stabilizing the thermal system.  

4.  Conclusion 

1. New thermal management devices have been proposed, tested and proved to be effective for LED 

cooling.  

2. In this study, we have proposed a model for calculating maximal heat flux based on the thermal 

properties of working fluids and height difference between the evaporator and the condenser. This 

model has shown good consistency with experimental data. Possible ways of improvement of the 

model have also been discussed.  

3. The experimental study of the nanoparticles' effect on the processes occurring in the 

thermosyphon has also been conducted. The obtained results indicate that nanofluids show great 

promise as a working fluid in two-phase systems, effectively increasing the heat transfer 

coefficient for up to 20%. Particularly the study of stability of nanofluids has revealed that in time 

nanoparticles tend to agglomerate and settle down, which can be prevented by introducing 

surface-active substances. However, further studies of these process need to be conducted. 

Additionally, the mechanism of nanoparticles improving the thermal properties of the base liquid 

is yet to be explained. The study of nanoparticles of different substances also merits attention. 

Metallic particles promise greater thermal conductivity than oxides, though the former are prone 

to oxidation, which may result in a substantially lowered thermal properties. These studies have 

not yet been conducted.  
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