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Abstract. The present study is concerned with a theoretical analysis of unidirectional
solidification process of ternary melts in the presence of a phase transition (mushy) layer.
A new analytical solution of heat and mass transfer equations describing the steady-state
crystallization scenario is found with allowance for a non-linear liquidus equation. The model
under consideration takes into account the presence of two phase transition layers, namely, the
primary and cotectic mushy regions. We demonstrate that the phase diagram nonlinearity leads
to substantial changes of analytical solutions.

1. Introduction
Solidification processes of binary and multicomponent melts frequently occur in the presence of a
phase transition layer, which divides purely solid and liquid phases. This layer arising as a result
of thermal or constitutional supercooling ahead of the growing solid/liquid interface is called a
mushy layer [1–4]. This supercooled layer is filled with the evolving solid phase elements in the
form of dendrite-like structures and/or nucleating and growing solid particles [5–18]. If the latent
heat of solidification releasing as a result of solid phase evolution completely compensates the
mushy layer supercooling, such a two-phase layer is called quasiequilibrium. If the latent heat
compensates the system supercooling in part, crystallization process evolves in non-equilibrium
manner. Mathematical models of these processes and their analytical solutions in binary melts
and solutions were considered in some detail in previous studies for a linear form of the phase
diagram (quasiequilibrium [19–27] and non-equilibrium [28–30] theories).

If the solidifying system represents a multicomponent melt, the situation changes rather
drastically. So, in the case of a ternary system, two mushy layers appear ahead of the solid phase
(primary and cotectic mushy layers). A mathematical model of unidirectional crystallization
process of a ternary system with a linear phase diagram was developed by Anderson [31] on the
basis of experimental data [32]. Exact analytical solutions of this model were determined for the
steady-state and self-similar crystallization conditions in [33–35]. Experimental and theoretical
investigations demonstrate that the phase diagram nonlinearity substantially changes the process
parameters and characteristics [36–38]. So, for example, nonlinearity in the phase diagram of
binary systems increases the mushy layer thikness more than twice [37]. The present study is
devoted to the question of how the nonlinear phase diagram influences the physical and process
parameters of ternary melt solidification with the primary and cotectic mushy layers.

http://creativecommons.org/licenses/by/3.0
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2. The model of directional solidification of ternary systems
Let us consider the process of directional solidification of a ternary system along the spatial
axis z (see Figure 1) and designate the concertrations of two substances dissolved in a solvent
A as B and C (A+B + C = 1). As the main material undergoes a phase transition in a layer,
which does not coincide with a phase transition region of the second component, two phase
transition zones, primary and cotectic, are capable to appear in the solidification process. We
denote their lengths as σP and σC (here subscripts P and C correspond to the primary and
cotectic layers). Taking into account that the system phase diagram was discussed in details in
refs. [34,35] we will not dwell on this point here and refer the reader to these original publications
instead. An important point is that the temperature relaxation time τT ∼ l2/κ is much smaller
than a characteristic relaxation time of the concentration fields τB ∼ l2/DB and τC ∼ l2/DC ,
i.e. τT � τC and τT � τB ( l - is a characteristic length scale, κ is the thermal diffusivity,
DB and DC are the diffusion coefficients of B and C components). These estimates for the
relaxation times show that the temperature derivatives with respect to time τ are much smaller
than the other terms of corresponding model equations. With this in mind, we write down a
mathematical model of the process based on the previous papers [33–35].

Solid phase Cotectic layer Primary layer Liquid phase

z

y

0

Vtz =

Figure 1. A scheme of the unidirectional crystallization process of a three-component system
with two phase transition layers.

The impurity concentrations B∞ and C∞ in the liquid phase (melt) and the temperature
gradient GL will be regarded as known

B → B∞, C → C∞, z →∞, (1)

∂T

∂z
= GL, z > V t+ δ = V t+ δC + δP , (2)

where T is the temperature, and V is the constant solidification rate. In addition, the following
diffusion equations in liquid hold true

∂B

∂t
= DB

∂2B

∂z2
,
∂C

∂t
= DC

∂2C

∂z2
, z > V t+ δ. (3)

The boundary conditions at the primary two phase layer - melt interface represent the heat
and mass balance and the continuity conditions written out in the form of

LV V [ϕA]+− =

[
k̄
∂T

∂z

]+
−
, [T ]+− = [B]+− = [C]+− = 0, z = V t+ δ, (4)
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BV [ϕA]+− = DB

[
χ
∂B

∂z

]+
−
, CV [ϕA]+− = DC

[
χ
∂C

∂z

]+
−
, z = V t+ δ. (5)

Here LV is the latent heat of solidification, k̄ = kLχ + kS (1− χ) , kL and kS are the thermal
conductivity coefficients in the melt and solid phases, χ is the liquid phase fraction, ϕA is the
solid phase fraction of component A. The symbol [.]+− denotes a jump of the corresponding value
at the boundary.

The heat and mass transfer equations in the primary two-phase layer, where the phase
transition undergoes the component A (χ = 1− ϕA), can be expressed as

∂

∂z

(
k̄
dT

dz

)
+ LV

∂ϕA
∂t

= 0, T = TM +mBB +mCC + nCC
2, V t+ δC < z < V t+ δ, (6)

DB
∂

∂z

(
χ
∂B

∂z

)
− ∂

∂t

(
χB
)

= 0, DC
∂

∂z

(
χ
∂C

∂z

)
− ∂

∂t

(
χC
)

= 0, V t+ δC < z < V t+ δ. (7)

Here TM is the phase transition temperature of the pure substance, mB and mC are the liquidus
slope coefficients.

Let us write down the boundary conditions at the second phase interface between the cotectic
and primary layers. These conditions, reflecting the heat and mass balance as well as the
continuity of temperature and concentration fields, read [31,33–35]

LV V [ϕA + ϕB]+− =

[
k̄
∂T

∂z

]+
−
, [T ]+− = [B]+− = [C]+− = 0, (8)

B = BC (T ) , C = CC (T ) , z = V t+ δC , (9)

V {B [ϕA]+−+(B − 1) [ϕB]+−} = DB

[
χ
∂B

∂z

]+
−
, V C [ϕA + ϕB]+− = DC

[
χ
∂C

∂z

]+
−
, z = V t+δC , (10)

where ϕB indicates the solid phase fraction of component B.
Further, the heat and mass transfer equations in the cotectic mushy layer, where the phase

transition undergo two components A and B (χ = 1− ϕA − ϕB), take the form

∂

∂z

(
k̄
∂T

∂z

)
+ LV

∂ (ϕA + ϕB)

∂t
= 0, V t < z < V t+ δC , (11)

B = BC (T ) =
TE +mC

BBE − T
mC
B

, T = TABE −mC
CC + nCCC

2, V t < z < V t+ δC , (12)

DB
∂

∂z

(
χ
∂B

∂z

)
− ∂

∂t

(
χB + ϕB

)
= 0, DC

∂

∂z

(
χ
∂C

∂z

)
− ∂

∂t

(
χC
)

= 0, V t < z < V t+ δC . (13)

Here TE , BE and CE are the known values of temperature and impurity concentrations at the
eutectic point of ternary system and TABE is the eutectic temperature of binary system. The
boundary conditions at the interface between the solid phase and cotectic layer are
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LV V [ϕA + ϕB + ϕC ]+− =

[
k̄
∂T

∂z

]+
−
, z = V t, (14)

V {B [ϕA]+− + (B − 1) [ϕB]+− +B [ϕC ]+−} = DB

[
χ
∂B

∂z

]+
−
, z = V t, (15)

V {C [ϕA]+− + C [ϕB]+− + (C − 1) [ϕC ]+−} = DC

[
χ
∂C

∂z

]+
−
, z = V t. (16)

In the solid phase, we have a constant temperature gradient GS , i.e.

∂T

∂z
= GS , z < V t. (17)

The model (1)-(17) represents a closed system of equations and boundary conditions
and enables us to find the model solution, which describes the steady-state ternary melt
crystallization.

3. Analytical solution of nonlinear model
Let us introduce the coordinate system which moves with the constant velocity V . The
crystallization process is established in the new coordinate system where all unknown functions
are independent of time. One can easily show that the diffusion equations (3) supplemented by
the boundary conditions (1), have the following integrals

B (y) = B∞ +B1 exp

(−V y
DB

)
, C (y) = C∞ + C1 exp

(−V y
DC

)
, y > δ = δC + δP , (18)

where B1 and C1 are the constants of integration. Futher, we find the temperature and
concentration derivatives performing the integration of heat and mass transfer equations (6)
and (7) in the primary two-phase layer

dT

dy
=

(LV V ϕA +A1)

k̄P (ϕA)
, k̄P (ϕA) = kL (1− ϕA) + kSϕA, δC < y < δ, (19)

dB

dy
=
A2 −BV (1− ϕA)

DB (1− ϕA)
,
dC

dy
=
A3 − CV (1− ϕA)

DC (1− ϕA)
, δC < y < δ, (20)

where A1 = k̄P ( ¯ϕAPL)GPL − V LV ¯ϕAPL, A2 and A3 are the constants of integration, GPL and
¯ϕAPL are the temperature gradient and solid phase fraction at y = δ. These unknowns will

be found below. Furher, combining expressions (19), (20) and the liquidus equation (6), we
determine the relationship between concentrations B and C in the primary two-phase region as

B (ϕA) = g (ϕA)− DBmC

DCmB
C (ϕA) +

2A3nCDB

V mBDC (1− ϕA)
C (ϕA)− 2nCDB

mBDC
C2 (ϕA) , δC < y < δ,

g (ϕA) =
DB

V mB

[
mBA2

DB (1− ϕA)
+

mCA3

DC (1− ϕA)

−

(
LV V

(
ϕA − ϕ−APL

)
+ k̄P

(
ϕ−APL

)
GPL

)
k̄P (ϕA)

 . (21)
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Now we define dB
dC in the primary mushy zone from expression (20)

dB

dC
=

(A2 − V B (1− ϕA))DC

(A3 − V C (1− ϕA))DB
. (22)

Next, we consider the case DB 6= DC and substitute dB from (21) into (22). As a result, we
obtain the expression

dC

dϕA
=

[ −2A3DBnC
V mB (1− ϕA)DCg′ (ϕA)

+
mCDB

mBDCg′ (ϕA)
+

4nCDBC

mBDCg′ (ϕA)

+
DC

(
A2 − V (1− ϕA)

[
g (ϕA) + C

(
2A3nCDB

V mBDC(1−ϕA) −
mCDB
mBDC

)
− 2nCDB

mBDC
C2
])

DB (A3 − V C (1− ϕA)) g′ (ϕA)

−1 . (23)

The boundary condition for this equation can be obtained from expression (10). Combining
formulas (20) and (23), we obtain

y (ϕA) = δC +

ϕA∫
ϕ+
ACP

dC

dϕA

DC (1− ϕA)

A3 − V C (1− ϕA)
dϕA, (24)

δ = δC + δP = δC +

ϕ−
APL∫

ϕ+
ACP

dC

dϕA

DC (1− ϕA)

A3 − V C (1− ϕA)
dϕA. (25)

Expressions (21)-(25) represent the parametric solution in the primary mushy layer (with
parameter ϕA (or χ = 1− ϕA )).

Substituting these solutions into the boundary conditions (4), (5) we get

GL =
−mBV B1

DB
exp

(
− V δ
DB

)
− mCV C1

DC
exp

(
− V δ
DC

)

+2nC

(
C∞ + C1 exp

(
− V δ
DC

))(
V C1

DC
exp

(
− V δ
DC

))
, (26)

GPL =
kLGL + LV V ϕ

−
APL

k̄P
(
ϕ−APL

) , A2 = V B∞, A3 = V C∞, (27)

B1 = exp

(
V δ

DB

)g (ϕ−APL

)
−B∞ +

 2A3nCDB

V mBDC

(
1− ϕ−APL

) − mCDB

mBDC


×
(
C∞ + C1 exp

(
− V δ
DC

))
− 2nCDB

mBDC

(
C∞ + C1 exp

(
− V δ
DC

))2
]
, (28)

C∞ + C1 exp

(
− V δ
DC

)
= C

(
ϕ−APL

)
. (29)

Next let us solve the problem in the cotectic zone. Integrating equations (11) and (13), we
have
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DBχ
dB

dy
+ V Bχ+ V ϕB = A6, DCχ

dC

dy
+ V Cχ = A7, (30)

dT

dy
=
k̄C
(
χ+
SC

)
GSC − V LV

(
1− χ+

SC

)
+ V LV (1− χ)

k̄C (χ)
≡ F0 (χ) . (31)

Differentiating equation (12) one can obtain expressions connecting dB
dy , dCdy and dT

dy . Substituting

them into (30) and (31), we obtain ϕB (χ), ϕA (χ) and C (χ)

ϕB (χ) =
DBχ

mC
BV

F0 (χ) +
A6

V
− χB (χ) , ϕA (χ) = 1− χ− ϕB (χ) , (32)

C2 (χ) ·
(
−2V nCC
DC

)
+ C (χ) ·

(
V mC

C

DC
+

2nCCA7

DCχ

)
−
(
mC
CA7

DCχ
+ F0 (χ)

)
= 0. (33)

From (12), we get

B (χ) =
−nCC
mC
B

C2 (χ) +mC
CBC (χ) +BE +

TE − TABE
mC
B

. (34)

Note that only one of two solutions of equation (33) lies within the unit interval. Analyzing
both solutions, we choose one of them (physically admissible)

C (χ) =

V mC
C

DC
+

2nC
CA7

DCχ
−

√(
V mC

C
DC

+
2nC

CA7

DCχ

)2

− 4
2V nC

C
DC

mC
CA7

DCχ
− 4

2V nC
C

DC
F0 (χ)

4V nC
C

DC

. (35)

Furthermore, from expression (31), we come to the liquid phase fraction and thickness of the
cotectic two-phase layer in the form

y (χ) =

χ∫
χ+
SC

dT

dχ

1

F0 (χ)
dχ, (36)

δC =

χ−
CP∫

χ+
SC

dT

dχ

1

F0 (χ)
dχ. (37)

Substituting these solutions into the boundary conditions (14) - (16) and taking into account
the temperature gradient (17), we arrive at the following expressions for constants

GSC =
kSGS − LV V χ+

SC

k̄C
(
χ+
SC

) , V
(
ϕ−BSC − ϕ

+
BSC −BEχ

+
SC

)
+ V

(
BEχ

+
SC + ϕ+

BSC

)
= A6, (38)

V
(
ϕ−CSC − ϕ

+
CSC − CEχ

+
SC

)
+ V CEχ

+
SC = A7, (39)

A7 =

(
GSCDC + 2C2

EV n
C
C − CEV mC

C

)
χ+
SC

2nCCCE −mC
C

, (40)
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where ϕ−BSC and ϕ+
BSC are the solid phase fractions of component B on the left and right sides

of the solid phase - cotectic layer boundary, ϕ−CSC and ϕ+
CSC are the similar values for the

component C. The boundary conditions (9) - (10) give

V =
kSGS − kLGL

LV
, A6 = A2 = V B∞, (41)

A7 = A3 = V C∞, (42)

CCP =

V mC
C

DC
+

2nC
CA7

DCχ
−
CP

−

√(
V mC

C
DC

+
2nC

CA7

DCχ
−
CP

)2

− 4
2V nC

C
DC

mC
CA7

DCχ
−
CP

− 4
2V nC

C
DC

F0

(
χ−CP

)
4V nC

C
DC

, (43)

B∞ −
(
1− ϕ+

ACP

) [
B∗ − nCC

mC
B

C2
CP +mC

CBCCP

]

= mC
CBDBC

(
C∞ − CCP

(
1− ϕ+

ACP

))
− 2

nCC
mC
B

DBC

(
C∞CCP − C2

CP

(
1− ϕ+

ACP

))
, (44)

C2
CP

(
−2nCDB

mBDC
+
nCC
mC
B

)

+CCP

 2C∞nCDB

mBDC

(
1− ϕ+

ACP

) − mCDB

mBDC
−mC

CB

+ g
(
ϕ+
ACP

)
−B∗ = 0, (45)

where DBC = DB
DC

, mC
CB =

mC
C

mC
B

, B∗ = BE +
TE−TAB

E

mC
B

. Now combining (38), (40) and (42), we

obtain the following expressions

a2
(
χ+
SC

)2
+ a1

(
χ+
SC

)
+ a0 = 0, (46)

χ+
SC =

−a1 ±
√
a21 − 4a2a0

2a2
, (47)

where

a2 = −V LVDC + 2C2
EV n

C
Ckl − 2C2

EV n
C
CkS − CEV mC

Ckl + CEV m
C
CkS ,

a1 = −V klC∞
(
2nCCCE −mC

C

)
+C∞kSV

(
2CEn

C
C −mC

C

)
+kSGSDC+2C2

EV n
C
CkS−V CEmC

CkS ,

a0 = −C∞kSV
(
2CEn

C
C −mC

C

)
.

Now from (38), (39) and (41), (42), one can get

ϕ−BSC
= B∞, (48)
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ϕ−CSC
= C∞, (49)

ϕ+
CSC

= 0. (50)

Furthermore, we find ϕ+
ACP

and CCP from expressions (44) and (45). Then we find χ−CP from
(43) with allowance for CCP . In addition, one can solve the differential equation (43) because

CCP = C
(
ϕ+
ACP

)
is known. Next, combining expressions (26), (28), and (29), we obtain

equations determining ϕ−APL
, C1 and B1. The boundary values on the right side of interface

between the solid and cotectic phases can be found from distributions (32) as ϕ+
ASC = ϕA

(
χ+
SC

)
and ϕ+

BSC = ϕB
(
χ+
SC

)
. Furthermore, distribution (32) also determines the boundary values

of solid phase fractions ϕ−ACP and ϕ−BCP of components A and B on the left side of interface

between the primary and cotectic layers as ϕ−ACP = ϕA
(
χ−CP

)
and ϕ−BCP = ϕB

(
χ−CP

)
.

4. Interdendritic spacing
Let us now calculate the primary interdendritic spacing on the basis of known impurity
concentration as a function of spatial coordinate. In order to find the analytical dependence for
interdendritic spacing λ, we use the previous theory [39]

λ =

√√√√ 2πρ

0.86∂(ϕA+ϕB)
∂y

, (51)

where ρ is the radius of curvature corresponding to a stable mode of dendritic growth. The
solvability theory [11,40,41] gives

2d0DT

ρ2Vd
= σ0β

7/4

 1(
1 + a1

√
βPg

)2 +
1(

1 + a2
√
βPg

DT
DC

)2 2mC
CCi (1− k0)DT

Q
cP
DC

 , (52)

where

Ci =
CCP

1− (1− k0) exp
(
Pg

DT
DC

)
Pg

DT
DC

IC (∞)
, (53)

IC (η) =

η∫
1

exp

[
−Pg

DT

DC
h

]
dh√
h
, (54)

a2 =
√

2a1 ≈ 0.505
√
σ0, σ0 is a fitting parameter, d0 is the capillary length,Vd is the dendrite

tip velocity, β is the anisotropic parameter, mC
C is the liquidus slope, Ci is the concentration of

impurity at the dendritic surface, k0 is the equilibrium partition coefficient, Q is the latent heat
per unit volume of the solid phase, cP is the heat capacity, DT is the thermal diffusivity, DC is
the solute diffusivity, and Pg is the growth Peclet number. Taking into account the theory under
consideration one can calculate the explicit function λ (Pg) on the basis of expressions (51)-(54).
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5. Discussion
A new analytical method for solving the problem of heat and mass transfer in a ternary system
is developed in this study. The distriburions of impurity concentration as well as of the solid
and liquid fractions in the phase transition layer are obtained. The effect of quadratic term in
the liquidus equation is studied as well.

Figure 2 shows the effect of deviation of the liquidus equation (coefficient n) from its linear
dependence. So, its small deviations (at a fixed impurity concentration) are capable to change
the reduced temperature several degrees. It should be noted that such variations often occur in
practice. Fig. 2 shows that the temperature decreases with decreasing n and vice versa.

- 10

- 15

- 20

0.25 0.3
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Т

n = -1

n = 0

n = 1

n = 2

Figure 2. The influence of coefficient n on the deviation of liquidus equation from a linear
function (temperature T is measured in Celcius).
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Figure 3. The solid fractions (solid and dashed lines), liquid fraction (dash-dotted line)
as functions of the spatial coordinate. The cotectic, primary and liquid layers respectively
correspond to regions I, II and III. The physical parameters are given in table 1 (y is measured
in cantimeters).

Figure 3 illustrates the solid and liquid phase distributions in the phase transition layer
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consisting of the primary and cotectic regions. The solid fraction ϕA of component A, which
undergoes the phase transformation in regions I and II, decreases monotonically in the phase
transition layer. In contrast, the solid fraction ϕB of component B, which undergoes the phase
transition in region I, decreases in the cotectic layer only. The cotectic layer length (region
I) therewith is lesser than the main layer (region II) of the phase transition. Accordingly
to these dependencies, the liquid phase fraction χ increases monotonically in the total phase
transformation domain (regions I and II). In addition, it is defined by the solid fractions ϕA and
ϕB in region I, whereas it is described by fraction ϕA in region II. For this reason, the distribution
χ (x) also has an inflection point in the primary layer as well as the solid fraction ϕA (x) . Our
calculations show that the solid and liquid phase fractions at the boundaries between regions I
and II, and II and III are continuous.
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0.08

I II III

C B

y

Figure 4. The impurity concentrations C and B as functions of the spatial coordinate
y = z − V t. All physical parameters correspond to Figure 2, δC = 2.168 cm, δ = 11.803
cm (y is measured in cantimeters).

Figure 4 demonstrates the distributions of impurity concentrations in the entire region of
phase transition. The main impurity component, having a concentration C (x), decreases
monotonically in regions I and II due to the effect of impurity displacement by the growing solid
phase. In contrast to this dependence, having a traditional behavior, the impurity concentration
of the second component B (x) increases in the cotectic layer, crosses the boundary between
regions I and II, reaches a maximum in the primary mushy zone and then decreases to the initial
concentration B∞. This, at first sight, unusual behavior of the impurity concentration B (x),
occurs due to the fact that component B undergoes the phase transition in region I (this leads to
a decreased concentration near the solid phase - cotectic layer boundary ). Note that a similar
behavior of the impurity concentration was obtained in the analysis of self-similar crystallization
in references [13,14,40,42,43]. However, in these studies, the maximum point was found on the
boundary of regions I and II. The reason explaining the maximum point displacement into region
II lies in the fact that previous studies (see references [13, 14, 40, 42, 43]) have been carried out
on the basis of approximate Sheil equations governing the impurity concentrations (equations
without diffusion terms). Therefore, in a real ternary system, the maximum point displacement
into the primary layer occurs due to the influence of diffusion transport of component B (x).

It should be noted that the influence of coefficient n of the liquidus equation is seen in Figures
3 and 4. All dependencies have the same behavior, however the mushy region length increases
significantly in comparison with the linear liquidus line equation.



11

1234567890

STPM2017  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 192 (2017) 012007 doi:10.1088/1757-899X/192/1/0120071234567890

STPM2017  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 192 (2017) 012007 doi:10.1088/1757-899X/192/1/012007

Figure 5 shows the interdendritic lengh λ as a function of the growth Peclet number Pg. Note
that the interdendritic spacing decreases with increasing Pg. This behavior is in consistent with
known experimental data [44,45] and the previously developed theory [46].
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0 05.

0
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g
P

Figure 5. The interdendritic spacing λ (measured in cantimeters) as a function of the growth
Peclet number Pg (thermophysical parameters are listed in Table 1).

Table 1. The physical parameters of three-component system H2O−KNO3−NaNO3 (B and
C designate NaNO3 and KNO3).

BE 0.06
CE 0.37
BAB
E 0.10

B∞ 0.035
C∞ 0.152
TE (0C) -19
TABE (0C) -5
TM (0C) 0
κ (cm2s−1) 1.1 · 10−3

DC (cm2s−1) 4.94 · 10−6

DB (cm2s−1) 4.94 · 10−6

LV /kS (s0C cm−2) 1.52 · 105

kL/kS 0.25
kS 5.3 · 10−3

GS (0C cm−1) 1
k0 0
σ0 2.1
β 0.195

The main result of this paper lies in the fact that even small deviations of the liquidus equation
from a linear dependence can be responsible for significant changes of other parameters governing
the ternary melt solidification process.
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