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Abstract. The role of instabilities of plastic flow at plastic deformation of various materials
is one of the important cross-disciplinary problems which is equally important in physics,
mechanics and material science. The strain rate sensitivities under slow and high strain
rate conditions of loading have different physical nature. In the case of low strain rate, the
sensitivity arising from the inertness of the defect structures evolution can be expressed by a
single parameter characterizing the plasticity mechanism. In our approach, this is the value of
the characteristic relaxation time. In the dynamic case, there are additional effects of “high-
speed sensitivity” associated with the micro-localization of the plastic flow near the stress
concentrators. In the frames of mechanical description, this requires to introduce additional
strain rate sensitivity parameters, which is realized in numerous modifications of Johnson–Cook
and Zerilli–Armstrong models. The consideration of both these factors is fundamental for an
adequate description of the problems of dynamic deformation of highly inhomogeneous metallic
materials such as steels and alloys. The measurement of the dispersion of particle velocities on
the free surface of a shock-loaded material can be regarded as an experimental expression of the
effect of micro-localization. This is also confirmed by our results of numerical simulation of the
propagation of shock waves in a two-dimensional formulation and analytical estimations.

1. Introduction

Some researches [1, 2], on the basis of a detailed consideration of microstructural processes,
suppose that the instabilities such as the shear bands after the shock wave front make almost
a dominant contribution to the plastic dissipation of wave energy. This means that the plastic
flow instabilities are of sufficient mechanical importance like the strain rate sensitivity effect due
to a decrease in the shock wave amplitude and, hence, an increase in the dynamical strength
of material. Many other researchers tend to think about the micro-localization phenomenon
mostly as about a feature of the plastic flow that is interesting only for material science but
not for mechanics. Besides that, the nature of strain rate sensitivity parameter at high strain
rates i s not clear and is a question to be discussed. Numerical simulations [3–5] with analytical
consideration on the basis of the integral form for plasticity criterion [5–7] (which is appropriate
for the high strain rate conditions) can shed new light on this problem. This type of criteria
includes two original parameters: one of them is the characteristic relaxation time τ which has
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a clear physical meaning [5], but the second one is an empirical parameter α whose nature is
unclear, and one can empirically find that α > 1 only for some classes of alloys and steels.
The parameter α gives an “addition” to the strain rate sensitivity for such materials, while the
parameter τ always makes the main contribution to the dynamic effects.

One can compare this point of view with the commonly used definition of strain rate
sensitivity at both low and high strain rates. The well-known relations for the yield stress
are

σeff = Cε̇m, (1)

where σeff = σ − σ0
y is an effective stress (without reference value of the yield stress) and the

parameter m = (∂ lnσ/∂ ln ε̇)T,ε is the strain rate sensitivity.
Numerical simulation based on the dislocation plasticity model discovers the new possibilities

for understanding the mechanisms of the material response to the external loading connected
with the defect structure evolution. These models also allow one to perform a detailed
investigation of the influence of the plastic flow instabilities on the mechanical behavior of the
material. The aim of our current investigation is to give a clear interpretation of the mechanistic
parameter of strain rate sensitivity at high strain rates by comparison of the simulation results
with the experimental data and the analytical consideration.

2. Strain rate sensitivity at low strain rates

The dependence of strain rate sensitivity parameter on the microstructure of the material can
be expressed in terms of the activation volume V ∗ as

m =

√
3kbT

σV ∗
, (2)

where kb is the Boltzmann constant and T is the temperature. For the activation volume
one can write the well-known relation V ∗ = bξl∗ [8], which is connected with the overcoming
of dislocation loops of obstacles located one from another at a distance l∗. Here ξ is the
distance swept out by the gliding dislocation during one activation event, which is approximately
equal to b. If the obstacles mainly have a dislocation nature (immobile dislocation clusters),

then l∗ ∼ ρD−1/2 and V ∗ = bξρ
−1/2
D . An experimental estimate of the activation volume for

coarse-grained aluminum equal to 1800b3 is given in [8]. This value decreases by almost an order
of magnitude for ultrafine-grained aluminum. In the quasi-static case, for the typical value of
the parameter m [8] in pure metals, the activation volume is 0.005–0.01. For higher strain rates,
but lesser than 102 s−1m, it is equal to 0.035–0.055.

The effect of the strain rate sensitivity parameter is shown mechanically according to
equation (1) as an increase in the yield strength of the material, which is the limiting value
of the stress, after which the macroscopic plastic deformation of the material begins and is
expressed as the classical Tresca–Guest yield criterion for quasi-stationary processes:

Σ(t) ≤ σ0
y, (3)

where Σ(t)/2 is the current maximal shear stress, Σ(t) is the longitudinal stress in the case of
simple compression, and σ0

y is the static yield strength. Equation (3) together with equation (1)
allows one to take into account the effect of the strain rate on the plastic flow of the material.
In this case, the value of the strain rate sensitivity parameter is unambiguously interpreted from
the thermo-activation point of view as the ratio of the internal energy to the energy of the field
of external forces (2). This is an essentially “static view” of the deformation process, which does
not imply an explicit consideration of temporal effects.

There is also another way to take into account the effect of strain rate on the yield
strength of the material widely used in polymer mechanics. For this purpose, one can use
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the concept of fading memory [9]: the loading, which was applied at the previous time
moments s ≪ τ , influences the current state of the material considerably less than the recent
loading. Consequently, the current stress should be replaced by its “relaxed” value, and the
earlier the stress acted in the material, the lesser its weight in the equation. In the general case,
this concept leads to the following form of the integral inequality:

I(t) =

∫ t

0
σ(s)K(t− s) ds ≤ σ0

y, (4)

where the kernel of the integral operator K(t) is the memory fading function. Criterion (4) for
large times transforms into (3). If one takes K(t) in the form of step-wise function

K(t) =

{

τ−1, 0 ≤ t ≤ τ

0, t > τ,

then the other well-known Maxwell model for very viscous liquid is obtained. In the latter
case, one gets a plasticity criterion with the only parameter of the characteristic time of plastic
relaxation [6, 10]:

1

τ

∫ t

t−τ
Σ(s) ds ≤ σ0

y. (5)

Integration of (5) at constant strain rate ε̇ = const for σ(t) = 2Gε̇t gives [5] the yield strength
as a function of the strain rate:

Σd(ε̇) =











√

4Gε̇τσ0
y, ε̇ ≥

σ0
y

Gτ
,

σ0
y +Gε̇τ, ε̇ <

σ0
y

Gτ
,

(6)

where G is the shear modulus. As one can see, this strain rate dependence on the yield strength
consists of a linear part (Maxwell model) that is enough for all low strain rate loading conditions
and a nonlinear part that is actual for high strain rate dynamic loading with the transition
point between two modes at the strain rate σ0

y/(Gτ). It is shown [5] that the characteristic time
depends on both the material structure and the plasticity mechanism and reflects the inertness
of the plastic relaxation. We have the following two parameters: the static yield as the strength
of the material and the characteristic time as its strain rate sensitivity characteristic. These two
parameters are enough for a unique determination of the dynamic yield stress in a wide range
of strain rates.

One can interpret τ in terms of the strain rate sensitivity at low strain rates. In [10, 11],
it was shown that, at high strain rates, the linear approximation of the dislocation velocity is
valid. On the basis of the Kelvin–Voigt model [11], under steady-state conditions as t → ∞,
if the static yield stress is neglected in comparison with the acting stresses (Στ = σy + 2Gε̇τ)
Στ ≫ σy, then the yield strength Στ is determined from the following condition at different
strain rates ε̇:

Στ = 2Gε̇τ. (7)

The macroscopic plastic shear deformation in the motion of dislocations was introduced by
Johnston and Gilman [12] and Johnston [13]:

ε = bρmx̄. (8)

Here we use the notation: b is the Bürgers vector, ρm is the density of mobile dislocations, and
x̄ is the mean dislocation path. Then the strain rate is

ε̇ = bρmv̄, (9)
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where v̄ is the average dislocation velocity. Replacing the deformation rate obtained in
condition (7), we obtain the following expression for the relaxation time:

τ =
Στ

2G

1

bρmv̄
. (10)

In the classical experiments by Johnston [13] on lithium fluoride crystals, an empirical
dependence of the strain rate on the applied shear stresses στ was observed:

v̄(στ ) =

(

στ
Dm

)n

, (11)

where Dm and n are the constant values for a fixed material structure. Note that the estimates
of Dm for various materials are calculated for a certain dislocation velocity in the range
∼ 0.1–1000m/s [12]. In particular, Johnston [13] estimated for lithium fluoride Dm = 5.3MPa
at VD = 0.1m/s. Substituting (11) with the material flow condition στ = Στ into equation (9)
and assuming that v̄ = VD(Στ ), we get the characteristic relaxation time through the mobility
parameters of dislocations (Dm, m, ρm):

τ =
1

2bρm

Στ

G

(

Dm

Στ

)n

. (12)

In this sense, the introduction of τ completely reflects the effect of the material sensitivity on
the stress level even at low strain rates. As one can see from the comparison of (1), (9), and (11),
n must be inversely proportional to m.

3. Strain rate sensitivity at high strain rates

At high strain rates that are typical of stress waves propagation in metals, an over barrier motion
regime occurs for the dislocation slip. Under these conditions, the thermal activation processes
no longer have a noticeable effect on their slip, and the dislocation velocity is determined by the
phonon drag BD so that the expression for their velocity has a form linear in the velocity [14]. We
have obtained the following expression for the relaxation time τD connected with the dislocation
motion [5]:

τD =
8χBD

3ρDGb2
, (13)

Hence, the value of the characteristic relaxation time no longer explicitly reflects the high-
strain-rate sensitivity given by relation (1) but still reflects the properties of the inertness of the
dislocation structure of the material during the relaxation of the arising stresses, which can lead
to their significant growth.

J. Campbell in 1953 proposed a dynamic yield criterion for mild steel [15]. He assumed the
thermo-activation nature of the plasticity processes, so that the time t′ = CeU/(kbT ) is required
to release dislocations, where C is a constant with the dimension of time. For the activation
energy, the approximation U = −U0 ln[σ(t)/σ0] proposed by Yokobori [16] was used, where σ(t)
is the value of the flow stress, σ0 is the yield strength at temperature 0K which can be replaced
by the static yield strength, and U0 is a constant. Combining the two relations, assuming that,
for the onset of plastic flow, it is necessary to attain a certain critical density of the mobile
dislocations, and taking into account that the flow stress can change in time, we obtain an
integral criterion for the onset of plastic yield in the form:

∫ t∗

0

[

σ(t)

σ0

]α

dt = C, (14)
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where α = U0/(kbT ) is a constant at a given temperature, t∗ is the moment of transition
to the plastic state (it is assumed that the time count starts from the moment when the
load is applied). The thermo-activation nature of the plasticity process, assumed in deriving
criterion (14), turned out to be erroneous in dynamics, as well as the inverse dependence of the
parameter α on the temperature. Nevertheless, it is significant that the concept of parameter α
characterizing the sensitivity of the material at a stress level was empirically introduced in the
model [14]. Comparing (14) with (5), it is clear that they coincide with an accuracy up to α
if one identifies C with τ . On the yield stress-strain rate curve, the characteristic relaxation
time determines the beginning of the dynamic branch of the curve, i.e., the critical strain rate
after which a sharp increase in the yield strength begins [5]. A decrease in the characteristic
time leads to an increase in the value of this critical velocity ε̇tr = σ0

y/(Gτ). The parameter α
determines the slope of the high-strain-rate branch of the yield stress-strain rate curve. Many
experimental data cannot be described by criterion (5) with α = 1. At the same time, for
pure metals it is close to unity [5]. Processing of a large number of experimental data from
many sources, performed by Yu.V. Suvorova and A.K. Pertsov [17, 18], as well as by other
researcher, convincingly demonstrates the necessity of introducing the alpha parameter for most
steels and alloys for which its values can reach several dozens, and it turns out to be mechanically
significant. From the more recent developments, numerous extensions [19, 20] to the classical
Johnson–Cook model [21] were obtained. A part of them, where the additional terms are
introduced proportionally to the dimensionless deformation rate up to k ∼ 0.5 [20], reflect the
features described above. Similarly to Campbell [15], the parameter of the material sensitivity
to the intensity level of the local stresses was introduced purely phenomenologically in the
criterion (2) in [5–7, 22–25]. It can be shown that the relationship between the parameters m
and α is expressed by the relation

m =
1

α+ 1
. (15)

Thus, α+ 1 is equal to the reciprocal of the parameter of the strain rate sensitivity of stresses.
From the number of calculations by criteria like (5), it is known that α > 1 is only necessary
for alloys and steels and only at high strain rates, when any τ in (5) give a markedly lowered
strain rate sensitivity of stresses. The physical nature and mechanisms reflected by the alpha
parameter remain a debatable issue.

4. Experimental investigations of the velocity dispersion

Determination of metal yield strength in dynamic experiments with high strain rates is usually
performed by analyzing the rear surface velocity profiles. Besides, it is possible simultaneously
to measure the second parameter, i.e., the dispersion of the rear surface velocity [1, 2]. If
the signal of the laser beam is reflected from a perturbed surface in the presence of shear
flow instabilities, then its amplitude decreases as compared to its counterpart with an ideal
unperturbed surface. Their ratio gives an experimental value of the velocity dispersion [1]. The
velocity dispersion value gives additional information about the micro-scale processes, which take
place in the material under the shock wave loading conditions. Figure 1a shows experimental
curves obtained by Yu.I. Meshcheryakov with coauthors [2] for aluminum alloy D16 (the impactor
velocity is Vimp = 160m/s, the target thickness is h = 5mm). One can see three maximuma of
the velocity dispersion VD consequently corresponding to the elastic precursor, the compression
wave, and the rarefaction wave. The values of dispersion maximums lay in the range from 20
to 40m/s. The maximal relative value of dispersion (Vimp/VD) is about 0.23. It is obvious from
other experiments that the relative value of dispersion is proportional to the solute concentration,
and it can be achieved up to several tens of percents from Vimp value for D16 alloy.
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Figure 1. Average velocity of the target free surface and the velocity dispersion on the wave
front: experimental [2] (a) and our numerical simulation data (b).

5. Numerical simulation and analytical consideration of the problem

Under real experimental conditions, the shock wave propagates through a material with
initial random perturbations of the microstructure parameters (dislocation density, impurity
concentration). to investigate the influence of these random perturbations, we performed 2D
numerical simulation of the plastic flow under shock wave loading on the basis of the model
for dynamics and kinetics of dislocations [3–5]. The initial dislocation density distribution
was randomly perturbed. Formation of shear bands inclined at 45 degrees to the shock wave
front was observed. The dispersion of the back surface velocity takes place similarly to the
one observed by Yu.I. Meshcheryakov et al [1, 2], it is but weaker. To estimate the plastic
flow heterogeneity, the normalized deviation W = ∆w/〈w〉 of the plastic deformation intensity

w =
√

4
3(w

2
xx + w2

yy +w2
xy + wxxwyy) was used, where ∆w = wmax−wmin and 〈w〉 is the average

value of w. In simulations, the observed heterogeneities of the plastic flow correspond to the
normalized deviation W lesser than 0.05, and according to our consideration, it corresponds to
the dispersion of the scalar dislocation density k = ρmax

D /ρmin
D ∼ 10. The velocity dispersion on

the shock wave front in this case is about 2m/s, which is an order of magnitude lower than the
experimental findings for various aluminum alloys reaching the values about 20–40m/s [2]. In
this way, the instabilities caused by the heterogeneities of the only initial dislocation density
cannot themselves provide a mechanically significant level of the plastic flow instability. One
can approximate the numerical simulation data in the form of the dependence of the velocity
deviation on the localization level by a logarithmic function W = ∆w/〈w〉 = 0.07 log k.

It is important that this relation cannot changing the minimum initial density of dislocations
in the range of orders of magnitude because of the intensive nucleation of dislocations during
the deformation (see figure 2).

The introduction of impurities in the material can create plastic deformation with greater
deviation as compared to the initial dislocation density perturbation. In the case of impurities,
the deviation reaches about 0.09 and hence k > 40 which gives the velocity dispersion after
the shock wave front of about 10–20m/s. It better corresponds to the experimental data for
aluminum alloys. In figure 3, one can see the calculated picture of micro-localization near the
randomly distributed hard copper inclusions in a soft aluminum media.

It is interesting to compare these values of plastic deformation perturbations obtained in the
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Figure 2. Dependence of the dispersion of the
intensity of plastic deformation (associated with
the dispersion of the free surface velocity of the
target) on the variance of the initial dislocation
density for two different minimum values of the
dislocation densities.

Figure 3. Two-dimensional numerical
simulation of micro-localization behind the
stress wave front under the impact loading of
an aluminum alloy with randomly distributed
stress concentrators.

numerical simulation and the experimental measurements with the empirically fitted values of
the strain rate sensitivity parameter α from the integral criterion of plasticity (1). One can show
that it is possible if we replace the parameter α in the integral criterion by the dispersion of the
characteristic relaxation time parameter. It obviously follows from equation (13) that if there

are any heterogeneities in the plastic flow in the material ∆τD = −[8χBD/(3ρ
(1)
D ρ

(2)
D Gb2)]∆ρD

such as in the case of spatial micro-localization of the plastic flow, then we have different flow
channels with different parameters of characteristic relaxation times that vary in a range [τ1, τ2].

Let us consider how important is the effect of dispersion or “smoothing” of the real spectrum
of the characteristic relaxation times on the mechanical characteristics of the material. For this
purpose, we have to consider a continuous spectrum of relaxation times. Suppose that one can
select a finite range of frequencies p = 1/τ which make the main contribution to the relaxation of
stresses. A more general case of the kernel of integral operator (4) than the stepwise function (5)
and exponential functions is its representation in the form of the Laplace integral [25]

K(t) =

∫ +∞

0
ϕ(p)e−pt dp, (16)

where ϕ(p) is the spectral density which must satisfy the normalization condition
∫ +∞

0 [ϕ(p)/p] dp = 1. For the simplest case of bands of uniformly distributed characteristic
relaxation times in the interval ∆τ = τ2− τ1 (τ1 < τ2), one can choose the spectral density ϕ(p)
in the form

ϕ(p) =
H(p− τ−1

1 )−H(p− τ−1
2 )

ln(τ2/τ1)
, (17)

where H(x) is the Heaviside function. Substituting equation (17) into equation (16) and
integrating at a constant strain rate, we obtain the dynamic yield strength as a function of
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the time of onset of the plastic flow Σd(t∗) [25]:

Σd(t∗) = σ0
y



























2τ

t∗
, t∗ < τ1,

ln(τ2/τ1)

τ1/(2t∗)− t∗/(2τ2) + ln(t∗/τ1)
, τ1 ≤ t∗ < τ2,

1− τ1τ2
2t∗τ

, t∗ ≥ τ2.

(18)

Here τ = τ1τ2(ln τ2 − ln τ1)/(τ2 − τ1). The relationship with the dispersion of the dislocation
density is expressed in the form ∆τD = τ(1 − k2)/(2k), where we assume in (13) that

ρD = ρ̄D = 1
2(ρ

(1)
D − ρ

(2)
D ). In the case where the band is narrow enough and k = 1, this

model turns into the model with one relaxation time (6). Thus, we obtain a new formulation
of the integral criterion, where a range of characteristic relaxation times is used instead of the
phenomenological parameter of the strain rate sensitivity to the stress level. According to (13),
this range has a clear physical meaning, which allows one directly to compare the spread of
characteristic times with the spread of the dislocation densities. Our calculations show that
the relation α ∼ 5 log k is possible. Namely, the dispersion of the characteristic relaxation time
and the dispersion of the dislocation density k < 10 corresponds to the values α < 5. This is
the case of numerical simulations with the dislocation plasticity model of pure material without
impurities and the relative dispersion of the plastic deformation intensity of approximately 0.07.
The case with k > 100 corresponds to α > 10, which is typical of materials with strong stress
concentrators such as steels [6].

Conclusions

The strain rate sensitivities under quasi-static and dynamic conditions of loading have different
physical nature. In the low strain rate case, the sensitivity arises from inertness of the defect
structures evolution and can be expressed by a single parameter characterizing the plasticity
mechanism. In our approach, this parameter is the value of the characteristic relaxation time.
In the dynamic case, the effects of inertness of defective microstructure evolution described
by this parameter become dominant and determine the value of the dynamic yield strength
of the material, but, in addition, new strain rate sensitivity effects arise that are associated
with the micro-localization of the plastic flow near heterogeneities or stress concentrators. In
the mechanical description, this requires the introduction of additional strain rate sensitivity
parameters, which is realized in numerous refinements of the Johnson–Cook and Zerilli–
Armstrong models [19, 20].

The consideration of both of these factors is required for an adequate description of the
problems of dynamic deformation of highly inhomogeneous metallic materials such as steels
and alloys. Many authors identify the values of the strain rate sensitivity in quasi-static
with dynamics regimes having a different order of magnitude and different physical nature,
which creates confusion in the interpretation of the research results. The measured dispersion
of particle velocities on the free surface of a shock-loaded material can be considered as an
experimental expression of the effect of micro-localization [1, 2]. This is also confirmed by
the results of numerical simulation of the propagation of shock waves in a 2D-formulation and
analytical estimates. A modification of the integral yield criterion [6, 22, 23] with regard to the
real dispersion of the material properties in the shear bands in a certain range of parameters
allows one to take into account all these effects in a natural way. It is possible to relate the
width of the range of characteristic relaxation times corresponding to different regions of the
heterogeneously deformed material to the value of the empirical parameter of its rate sensitivity
at high strain rates.



9

1234567890 ‘’“”

TPCM-2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 991 (2018) 012012  doi :10.1088/1742-6596/991/1/012012

Acknowledgments

The study was supported by the grants from the President of the Russian Federation
(Projects Nos. MK-4649.2016.1 and MD-7481.2016.1) and by the grant from the Ministry of
Education and Science of the Russian Federation (competitive part of State Task of NIR CSU
No. 3.2510.2017/PP).

References
[1] Meshcheryakov Yu I, Divakov A K, Zhigacheva N I, et al. 2008 Dynamic structures in shock-loaded copper

Phys. Rev. B 78 64301–16
[2] Meshcheryakov Yu I, Vasilkov V B, and Atroshenko S A 1993 About rotational and translational modes of

plasticity and fracture initiated by dynamic loading of materials J. Mech. Behavior Mater. 4 255–66
[3] Mayer A E, Khishchenko K V, Levashov P R, and Mayer P N 2013 Modeling of plasticity and fracture of

metals at shock loading J. Appl. Phys. 113 193508
[4] Mayer A E, Borodin E N, and Mayer P N 2013 Localization of plastic flow at high-rate simple shear Int. J.

Plast. 51 188–99
[5] Selyutina N, Borodin E N, Petrov Y, and Mayer A E 2016 The definition of characteristic times of plastic

relaxation by dislocation slip and grain boundary sliding in copper and nickel Int. J. Plast. 82 97–111
[6] Gruzdkov A A, Petrov Yu V, and Smirnov V I 2002 An invariant form of the dynamic criterion for yield of

metals Phys. Solid State 44 (11) 2080–2
[7] Gruzdkov A A and Petrov Yu V 1999 On temperature-time correspondence in high-rate deformation of

metals Dokl. Phys. 44 (2) 114–6
[8] Suo T, Chen Y, Li Y, et al. 2013 Strain rate sensitivity and deformation kinetics of ECAPed aluminium over

a wide range of strain rates Mater. Sci. Engng A 560 545–51
[9] Rabotnov Yu N 1980 Elements of Hereditary Solid Mechanics (Moscow: MIR) p 392

[10] Petrov Yu V and Borodin E N 2015 Relaxation mechanism of plastic deformation and its justification using
the example of the sharp yield point phenomenon in whiskers Phys. Solid State 57 (2) 353–9

[11] Borodin E N, Mayer A E, Petrov Yu V, and Gruzdkov A A 2014 Maximum yield strength under quasi-static
and high-rate plastic deformation of metals Phys. Solid State 56 (12) 2470–9

[12] Hull D and Bacon D J 2011 Introduction to Dislocations (Amsterdam: Elsevier)
[13] Johnston W G 1962 Yield points and delay times in single crystals J. Appl. Phys. 33 2716
[14] Krasnikov V S, Mayer A E, and Yalovets A P 2011 Dislocation based high-rate plasticity model and its

application to plate-impact and ultra short electron irradiation simulations Int. J. Plast. 27 (8) 1294–308
[15] Campbell J D 1953 The dynamic yielding of mild steel Acta Metall. 1 706–10
[16] Yokobori T 1986 An Interdisciplinary Approach to Fracture and Strength of Solids (New York: Gordon &

Breach)
[17] Mnev E N and Pertsov A K 1970 Hydroelasticity of Shells (Leningrad: Sudostroenie) [in Russian]
[18] Suvorova Yu V 1968 Delayed yield in steels (review) J. Appl. Math. Tech. Phys. 9 (3) 270–4
[19] Couque H, Boulanger R, and Bornet F 2006 A modified Johnson-Cook model for strain rates ranging

from 10−3 to 105 s−1 J. Phys. IV (Proc.) 134 87–94
[20] Couque H 2014 The use of the direct impact Hopkinson pressure bar technique to describe thermally activated

and viscous regimes of metallic materials Phil. Trans. Roy. Soc. A 372 20130218
[21] Johnson G R and Cook W H 1983 A constitutive model and data for metals subjected to large strains, high

strain rates, and high temperatures In Proc. of 7th Int. Symp. on Ballistics, The Hague, 19–21 April 1983
(Hague: The Netherlands) pp 541–7

[22] Petrov Yu V and Sitnikova Y V 2005 Temperature dependence of spall strength and the effect of anomalous
melting temperatures in shock-wave loading Tech. Phys. 50 (8) 1034–7

[23] Gruzdkov A A and Petrov Yu V 2012 Incubation-time based approach for dynamic yielding of metals J.
Ningbo University 25 (1) 78–82

[24] Gruzdkov A A, Sitnikova E V, Morozov N F, and Petrov Y V 2009 Thermal effect in dynamic yielding and
fracture of metals and alloys Math. Mech. Solids 14 (1-2) 72–87


