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Abstract. Turbulent flows of a viscous incompressible fluid in a layer between rotating 
concentric spheres under the action of the modulation of the velocity of one of the spheres have 
been studied experimentally and numerically. The form of spectra of turbulent pulsations of the 
azimuthal velocity depends on the sphere whose rotational velocity is modulated, as well as on 
the amplitude and frequency of modulation. The possibility of the formation of turbulence with 
spectra qualitatively similar to spectra obtained in measurements in the upper atmosphere is 
established: with the slope close to –3 at low frequencies and close to –5/3 at high frequencies 
and with the negative longitudinal velocity structure function of the third order. It has been 
shown that such spectra are formed in the regions of a flow that are strongly synchronized 
under the action of the modulation of the rotational velocity. 

1.  Introduction 
Large scale flows in the atmosphere occur in the presence of fast rotation of the Earth, and their 
properties are usually explained within the concept of “two-dimensional” turbulence [1,2]. In two-
dimensional turbulence, two inertial intervals are usually identified corresponding to energy transfer at 
low wave numbers and enstrophy transfer at high wave numbers [3]. Energy and enstrophy supply to a 
flow occurs owing to external forces with wave numbers between these intervals. The inertial interval 
of energy transfer from high to low wave numbers (inverse cascade) is described by the same 
Kolmogorov relation as in three-dimensional turbulence [4] for the dependence of the energy spectrum 
E(k) on the wave number k: E(k) ~ k-5/3. In the inertial interval of enstrophy transfer from low to high 
wave numbers (direct cascade), this dependence has the form E(k) ~ k-3. The direction of the cascade is 
determined by the sign of the third order longitudinal velocity structure function [5], which is defined 
as DLLL = 〈[u(l) – u(l')]-3 〉, where u is the velocity at the spatially separated points l and l' and angular 
brackets mean averaging over the ensemble of realizations. The negative and positive signs of DLLL 
correspond to the direct and inverse cascades, respectively. Conclusions of the theory of two-
dimensional turbulence, in particular, the formation of spectra with a slope of –5/3 and –3 at large and 
small scales, respectively, were confirmed in numerous results reviewed in [6,7]. At the same time, 
several year measurements of the horizontal velocity of the wind in upper layers of the Earth’s 
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atmosphere, performed during several years, revealed an anomalous location of spectral regions that is 
inconsistent with the theory of two-dimensional turbulence. In particular, spectra of turbulence with a 
slope of –3 begin at scales larger than 700 km and are limited by a strong peak at a scale of 104 km. 
Spectra with a slope –5/3 were detected at scales smaller than 500 km [1]. Analysis of third order 
structure functions in [2] showed that only one of these regions with the slope of –3, corresponds to 
two-dimensional turbulence. This indicates the direct energy transfer cascade in both spectral regions 
under consideration. Despite the existing explanations [1, 8, 9]reasons for the inverse position of 
spectral regions, as well as the possibility of reproducing this phenomenon under laboratory 
conditions, are as yet unclear. Both viscous dissipation [10]and vertical motions that are components 
of large scale circulation [6] prevent two-dimensional turbulent flows in the atmosphere. Large scale 
circulation also exists in turbulent flows induced by the rotation of the boundaries of the spherical 
layer, which is responsible for the motion of viscous incompressible fluid sandwiched between them 
[11]. It is exactly why the model spherical Couette flow is studied in this work for the qualitative 
simulation of processes in the atmosphere. By analogy with [12], where transitions between two- and 
three-dimensional turbulence were studied in the presence of the azimuthal jet counter to the direction 
of the rotation of cylinders, we chose the case of the counter rotation of spheres. Under stationary 
boundary conditions, oppositely directed vortices with an interface between them are formed in the 
meridional plane of such a flow (see figure 1, which is similar to figure 1 in [13]). A similar 
circulation can be observed in the case of the rotation of only the inner sphere in the presence of 
altitude-inhomogeneous external heating [14], typical of the atmosphere. In spherical layers the 
formation of turbulence with a high correlation dimension occurs by the increase in the rotation 
velocity of one of the boundaries [11, 15] as well as by their modulation [16]. The spectrum of 
developed turbulence in the latter case depends on the parameters of force action [17]. 

2.  Method of calculation  
An isothermal flow of a viscous incompressible fluid is described by the Navier–Stokes and continuity 
equations:  

2

, 0,
2

U p UU rotU grad rotrotU divU
t

 ∂
= × − + − ν = ∂ ρ 

 

where U, p, ν, and ρ are the velocity, pressure, viscosity, and density of the fluid, respectively. These 
equations were numerically solved in a spherical coordinate system where the impermeability and no-
slip conditions for the azimuthal uφ, radial ur, and polar uθ components of the velocity have the form 
uφ(r = r1,2) = Ω1,2(t)r1,2sinθ, ur(r = r1,2) = 0, uθ(r = r1,2) = 0, where subscripts 1 and 2 correspond to the 
inner and outer spheres, respectively. We used an algorithm of numerical solution [18] based on a 
conservative finite difference scheme of the discretization of the Navier–Stokes equations in space and 
semi-implicit Runge–Kutta scheme of the third order integration accuracy in time. Discretization in 
space was performed on grids nonuniform in r and θ directions with concentration near the boundaries 
and equatorial plane and the total number of nodes 5.76 × 105. The sensitivity of the results to the 
parameters of grid was analyzed in detail in [13], [19]. This algorithm was used for calculations with 
both stationary [11] and periodic [19] boundary conditions. Agreement was shown to be between the 
experimental and calculated results, including the integral properties of turbulent flows. S − spectra of 
pulsations of the square of the azimuthal velocity component uϕ (minus the average value determined 
for the entire sample) were calculated at points 1–7 shown in figure 1 (θ and φ are constant and only r 
is varied). To this end, uφ time series with a length of no less than 72000 points were written with a 
time step Δt = 0.015–0.025 s. DLLL was obtained using the dependence of uφ on the azimuth angle φ 
during 16 rotation periods (0 ≤  φ ≤32π). All calculations were performed for the initial and boundary 
conditions corresponding to the experimental conditions. 
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3.  Exper imental setup 
The experimental setup consisted of two coaxial spheres with inner and outer radii r1 = 0.075 m and r2 
= 0.150 m. The space between the spheres was filled with silicone oil with viscosity ν= 50 ×10-6 m2/s 
at the temperature of the working fluid of 22°C to which aluminum powder was added for 
visualization of flows. The rotation velocity was periodically varied by the law Ωk(t) = Ωk0[1 + Ak 
sin(2πfkt + Φk)] with an accuracy of no worse than 0.5% (where Ak and fk are the amplitude and 
frequency of modulation; Ωk0 is average angular velocity of rotation; initial phase Φk is arbitrary). The 
modulation frequencies f1 = 0.01 – 0.1 Hz and f2 = 0.01 – 0.02 Hz were no higher than the average 
rotation frequencies of the spheres (Ω10/2π = 0.59 Hz, Ω20/2π = 0.32 Hz). The measurements of uφ 
were performed by a SDS 01.11 laser anemometer with the allowable velocity interval of 0.005–1 m/s 
and a data sample rate of 20.16 Hz. The measurement point was located near point 7 in figure 1. The 
experiments were performed at Reynolds numbers Re1 = Ω10 r1

2 /ν = 412.5 ± 0.5 and Re2 = Ω20 r2
2 /ν = 

–900 ± 1. At these Reynolds numbers in the absence of modulation, a periodic flow with the frequency 
f0 = 0.0376 Hz is formed in the layer; this flow referred to as initial is a result of mutual 
synchronization of individual linear modes [13]. The initial flow has the form of traveling azimuthal 
waves with the wave number m = 3. The modulation of the rotation velocity of one of the boundaries 
leads to the flow induced synchronization. With an increase in the amplitude of modulation at a fixed 
frequency, the initial flow is destroyed. Turbulence appears at the transition from mutual syn-
chronization to induced synchronization [16]. More detailed description of the setup and experimental 
technique can be found in [16]. 

 

Figure 1. Calculated stream functions ψ (in cubic meters per second) (see Zhilenko and Krivonosova 
[13]) in the meridional plane of the axisymmetric steady state flow at Re2 = –900, Re1 = 414: ψmax = 6 
× 10-6, ψmin = –6 × 10-6, and Δψmax = 6 × 10-6. Dashed lines are negative value contours. Points 1–7 are 
located at the relative distance l = (r – r1)/(r2 – r1) = 0.135, 0.246, 0.359, 0.484, 0.611, 0.7, and 0.803 
from the inner sphere (where r1 and r2 are the radii of the inner and outer spheres) with a deviation of 

0.206π from the equatorial plane.  

4.  Results 
The processing of the results of measurements of uφ shows that the form of spectra S near the 
threshold of formation of turbulence is independent of the modulation frequency. In this case, the 
spectra have a constant slope in the frequency range limited from below by the largest of the quantities 
f0 and fk. In the case of the modulation of the rotation velocity of the inner sphere, the slope of the 
spectra is in the range between –5/3 and –3 and approaches –5/3 with an increase in the amplitude. 
With a further increase in the modulation amplitude, the spectra can be transformed to the form 
characteristic of two-dimensional turbulence. For modulation of Ω1(t) at f1 ≤ f0 (figure 2a), the spectra 
obtained both from measurements and numerically exhibit a pronounced segment with a slope of –5/3 
at low frequencies (0.06–0.27 Hz) and a segment with a slope of –3 at high frequencies (0.27–0.8 Hz). 
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With an increase in f1 ≥ f0, the form of the spectrum is transformed (figure 2b) and only the segment 
with a slope of –3 remains between the modulation frequency f1 and the end of the inertial interval.  

Figure 2. Inner sphere modulation. Spectra at point 7 (see figure 1). (a) - f1 = 0.01 Hz, A1 = 0.163; (b) 
- f1 = 0.1 Hz, A1 = 0.217. 1 – experiment and 2 – calculation. 

 
 In the case of the modulation of Ω2(t) near the transition to turbulence, spectra with a slope in the 

range between –5/3 and –3 are observed. At an increase in the amplitude, the spectra are modified to 
the form qualitatively corresponding to the spectra of atmospheric turbulence [1] with a slope –3 at 
frequencies below 0.1 Hz and –5/3 at higher frequencies (0.1–0.31 Hz) (figure 3a). A further increase 
in   the amplitude can result in spectra with a constant slope between –5/3 and –3. Under the condition 
fk ≤ f0, the form of the spectrum depends on the position of the point at which the azimuthal velocity is 
calculated. In the single studied case f1 ≥ f0, the spectra were spatially uniform. The most characteristic 
differences in the form of the spectra at points 1–7 (figure 1) are observed in the case of Ω2(t) 
modulation. In particular, near the outer sphere and at a certain distance from it (points 7–3), the 
observed spectra are typical to atmospheric turbulence, whereas the spectrum observed near the inner 
sphere (point 1) has a constant slope of -5/3 and is typical to three-dimensional turbulence (figure 3b). 
We tried to determine the direction of the energy cascade in the cases corresponding to the spectra 
shown in figure 2 and 3 from the sign of the third order longitudinal velocity structure function. 

Figure 3. Outer sphere modulation with f2 = 0.02 Hz, A2  = 0.2. Spectra: (a) – at point 7 (1- 
experiment and 2- calculation);  (b) – at point 1  (see figure 1). 

 
The sign of the quantity under consideration alternates with a period of 2π/3, because large scale 

coherent structures [11] characteristic of the initial flow are held in the turbulent flow. Similar large 
scale coherent structures in the upper layers of the atmospheres of planets (e.g., Venus) were 
assumingly interpreted as Rossby waves [20]. For this reason, to determine the sign of DLLL, the results 
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of the calculation were approximated by sixth order polynomials. figure 5 shows the dependence of 
DLLL on the frequency f given by the expression [21] f = 〈uϕ〉/l, where 0 < l < 32πr and 〈uϕ〉 is the 
average velocity at a distance of rsinθ from the axis. We first consider flows for which the observed 
spectra were typical to two-dimensional (figure. 2a) and three-dimensional (figure 3b) turbulence. In 
the former case (figure 4, line 1), transition from positive DLLL values to negative is observed at f = 0.2 
Hz. At the same frequency, transition from a slope of –3 to a slope of –5/3 is observed in the 
experiment (figure 2, line 1). In the latter case (figure 4, line 2) DLLL < 0. Both of these cases confirm 
the correctness of the estimate of the sign of DLLL. In the case of atmospheric turbulence (figure 4, line 
3), DLLL < 0 in the frequency range corresponding to the segments of the spectrum with both slopes of 
–3 and –5/3. Thus, the direct energy transfer cascade is observed in both segments of the inertial 
intervals in complete agreement with the results of processing of natural measurements in [2].  

Figure 4. Approximation of the third-order longitudinal velocity structure function DLLL in arbitrary 
units for (1) f1 = 0.01 Hz, A1  = 0.163 and (2, 3) f2 = 0.02 Hz, A2  = 0.2 at points 7 (1, 3) and 1 (2). 

 
The results obtained for the model flow under consideration imply that the form of spectra of 

turbulence in the upper layers of the atmosphere is explained by the induced synchronization of the 
periodic part of atmospheric flows (e.g., Rossby waves) by an external periodic action with a longer 
period. Since the main source of the energy for all atmospheric processes is solar heat, seasonal 
variations of this quantity can be considered as such a periodic external action on the atmosphere.  

5.  Conclusions 
The results of the performed experimental and numerical studies have shown that a decrease in the 
modulation frequency is accompanied by an increase in differences in the behaviors of the azimuthal 
and meridional components of the kinetic energy of the flow. The former component remains periodic, 
whereas the latter component changes the periodic behavior to chaotic. The suppression of turbulence 
of the azimuthal kinetic energy of the flow promotes the formation of quasi-two-dimensional 
turbulence. The form of spectra of turbulent pulsations of the azimuthal velocity depends on the sphere 
whose rotation velocity is modulated, as well as on the amplitude and frequency of modulation. 
Spectra characteristic of two-dimensional turbulence with a constant slope of –5/3 and an inverse 
cascade (DLLL > 0) at low frequencies and with a slope –3 and a direct cascade (DLLL < 0) at high 
frequencies have been observed in the case of the modulation of the inner sphere velocity. At a 
modulation frequency below the frequency of the initial periodic flow, the form of the spectra is 
spatially nonuniform. In the case of the modulation of the outer sphere velocity, spectra with the 
qualitative form characteristic to turbulence in the upper layers of the atmosphere with a constant 
slopes of –3 and –5/3 at low and high frequencies, respectively, are observed in the region of 
circulation induced by the outer sphere. For both segments of the inertial interval DLLL < 0. The form 
of the spectrum near the inner sphere is characteristic of three-dimensional turbulence: the segment 
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with a constant slope of –5/3 presents and DLLL < 0. It has been found that the level of synchronization 
between the rotation velocity of the boundary and the velocity of the flow is different in all flows 
considered above. The lowest and highest levels of synchronization are observed where spectra are 
similar to spectra of three-dimensional and atmospheric turbulence, respectively.  
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