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The Singlet-Triplet Pseudo-Jahn-Teller Centers in Copper Oxides.

A.S. Moskvin, Yu.D. Panov.
Department of Physics, Ural State University, Ekaterinburg, Russia

One of the most exciting features of the hole centers CuO5−
4 in doped cuprates is an unusually

complicated ground state which is the result of the electronic quasi-degeneracy. An additional hole,
doped to the basic CuO6−

4 cluster with the b1g hole can occupy both the same hybrid Cu3d −O2p
orbital state resulting in a Zhang-Rice singlet 1A1g and the purely oxygen eu molecular orbital
resulting in a singlet or triplet 1,3Eu term with the close energies. We present detailed analysis of
the (pseudo)-Jahn-Teller effect driven by the near-degeneracy within the 1A1g ,

1,3 Eu-manifold.

I. INTRODUCTION.

Intuitive ideas concerning a specific role of Jahn-Teller ions (centers, polarons) have been used as a starting point
of the pioneer investigations by K.A.Muller and J.G. Bednorz resulting in 1986 in the outstanding discovery of the
high-Tc superconductivity [1]. Unfortunately, in the following years no breakthrough in understanding of this puzzling
phenomenon occurred. In many respects such situation is accounted for the underestimation of Jahn-Teller-effect and
related phenomena that is typical for the conventional ”metallic” approaches to the description of the electronic
structure of the cuprates: namely these approaches underly the majority of the popular scenario’s for the high-Tc
superconductivity. Additional argumentation of the opponents of the Jahn-Teller approach is based on the widespread
opinion that the CuO4 cluster with the doped hole forms a well-isolated spin and orbital singlet 1A1g (Zhang-Rice
singlet).
Well-isolated Zhang-Rice singlet is a natural starting point for many model approaches including the well-known t-J-

model. However, it does not provide an explanation of wide set of unconventional physical properties of the cuprates,
in particular, those associated with anomalous lattice and electron-lattice effects, and should be reconsidered and
generalized.
A considerable number of experimental data were accumulated which more or less directly give evidence in favor

of existence of the copper-oxygen centers with near-degeneracy effects and anomalously strong electron-vibrational
(or Jahn-Teller) correlations. More and more experimental data argue that a single band picture for the low energy
excitations in the cuprates is inadequate.
An observation of the so-called mid-infrared (MIR) absorption bands in different CuO4-cluster based oxides is one

of the most impressive manifestations of near-degeneracy effects [2] and, moreover, this phenomenon provides an
important information about the energy spectrum and electronic structure within the ground state manifold. An
appearance of the MIR bands with specific transformation of the absorption spectra in cuprates upon doping leads
to a conjecture that the latter is accompanied by the sharp correlational decrease in the energy of the charge transfer
transition b1g → eu that determines the fundamental absorption band for the parent oxides [3]. Thus, ”parent”
absorption band shifts from rather usual position around ∼ 2 ÷ 3 eV to the mid-infrared region forming the MIR
band. An appearance of the MIR bands upon hole doping could be readily explained by assuming that additional
hole doped to the basic CuO4 cluster with the b1g hole can occupy both the same hybrid Cu3d − O2p orbital state
resulting in the Zhang-Rice singlet 1A1g and the purely oxygen eu molecular orbital resulting in the singlet or triplet
1,3Eu term with the close energies. Then the MIR-absorption is determined by the allowed charge transfer transition
b21g : 1A1g → b1geu : 1Eu and represents the correlation analogue of the corresponding single-particle b1g → eu
transition (see Fig.1).
Perhaps, a detection of isolated PJT center would provide the direct manifestation of the validity of the Jahn-

Teller conception. In this connection the paper [4] should be noted where the authors have performed NQR study
of the isolated hole centers in La2Cu0.5Li0.5O4. The results can be interpreted as convincing evidence of the quasi-
degenerated singlet-triplet structure of the hole center. This conclusion is based on the following:
1. The authors have detected spin singlet ground state (S = 0) and low lying spin triplet state (S = 1) with

singlet-triplet separation ∆ST = 0.13 eV .
2. They observed anomalously weak temperature dependence of the relaxation rate at low temperatures that gives

evidence of occurrence of the spinless multiplet structure in the CuO4 cluster ground state.
3. They’ve found considerable spin contribution to the low temperature relaxation indicating the simultaneous

occurrence of the ground state multiplet structure, sufficiently low singlet-triplet separation and intrinsic singlet-
triplet spin-orbital mixing.
4. They observed the relaxation inequivalence of the various Cu sites, which is quite natural for the PJT centers

in the conditions of the static PJT effect.
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The Jahn-Teller hole centers like CuO5−
4 with singlet-triplet quasi-degeneracy within ground state have been

observed by ESR spectroscopy in LaSrAl1−xCuxO4 which is isostructural to La2−xSrxCuO4 [5]. Moreover, Yu.
Yablokov et al. [6] conjectured that doped hole in the copper-oxygen clusters occupies a purely oxygen a2g(π), or
b2u(π) like orbitals. An important indication to the O2p(π) nature of doped holes and, hence, to the occurrence of
near-degeneracy for configurations like b21g and b1geu(π) was obtained by Yoshinari [7] and Martindale et al. [8] after

the analysis of the 17O Knight shift data and temperature-dependent anisotropy of the planar oxygen nuclear spin-
lattice relaxation rate in Y Ba2Cu3O6+x, respectively. Analogous conclusion could be drawn out of the comparative
analysis of the temperature behavior for the nuclear spin-lattice relaxation rate in La2−xSrxCuO4 [9]. All this implies
a complicated nature of the ground state manifold for the CuO4 center with a significant mixing of the Zhang-Rice
singlet and some other molecular term, which symmetry should be distinct from 1A1g. This conclusion conflicts with
the widespread opinion regarding the well isolation of the Zhang-Rice singlet.
An important argument in favor of vibronic nature for ground state of CuO4 clusters with the participation of eu-

orbitals in the 123 system was obtained after analysis of experimental data on EFG (electric field gradient) tensor for
different nuclei in 123 system [10]: non-contradictory description of the data implies a considerable (10%!) difference
in electron density for O(2) and O(3) oxygens. It is unlikely that this result could be obtained without PJT effect.
These and many other results of resonance (ESR, NQR/NMR) experiments being precise local probes cast doubt

on the validity of popular conceptions which are widely used as a starting point for the analysis of resonance and in
broader sense for many other physical effects in cuprates.
A considerable number of the experimental indications of Jahn-Teller (vibronic) effects is associated with observation

of lattice instabilities, ferroelectric [11], pyro- and piezoelectric [12] anomalies, local static and dynamic distortions
[13], various phonon anomalies and manifestation of substantial electron-phonon effects such as the line shift and
Fano effect for the phonon modes associated with local PJT-active modes [14–16]. These observations and many
other lattice effects are signatures of unconventional strong electron-lattice interaction at work in the cuprates [13]
with highly nonlinear and nonadiabatic intrinsic dynamics. Up to now these phenomena are often considered as
convincing evidence in favour of the ”structural” scenario for the high-Tc superconductivity usually associated with
polarons (pseudo-Jahn-Teller polarons) or bipolarons [13,17]. A number of the phonon anomalies could be associated
with the vibronic pseudo-spin fluctuations or, in other words, with effects of the short-range cooperative Jahn-Teller
ordering [18]. These anomalies are linked with the specific points both inside the BZ and on its boundary.
In our opinion the indirect evidence for Jahn-Teller nature of the CuO4 centers with active role namely of the copper-

oxygen hybrid Qeu mode was displayed by the maximum entropy method (MEM) in Y Ba2Cu3O6+x at x ∼ 1 [19]. The
authors observed characteristic squarish deformation of the nuclear density for Cu atoms in the CuO2 plane due to the
anomalously strong anharmonic low temperature (T = 15K) motion presumably of vibronic nature. Unconventional
isotope effect and anomalous anisotropic pressure effect on Tc in doped cuprates could also be associated with vibronic
effects.
Thus, numerous experimental data show that Zhang-Rice model should be generalized with inclusion of near-

degeneracy effects accompanied by PJT effect.
Many authors have treated JT (or PJT) effect in doped cuprates in a rather general and various form both as a

source of the local pairing [20] and as a source of the unconventional physical properties [21–24]. So, H. Kamimura
[22] proposed a mechanism of the HTSC due to the coherent bipolaron conduction induced by JT distortions. A
dynamic Van Hove Jahn-Teller effect has been introduced by R.S. Markiewicz [23]. The essence of the vibronic model
by M. Georgiev et al., L. Mihailov et al. [24] is existence of off-centered apex oxygens as local polarizable states due
to PJT effect. Their model is one of the numerous so-called anharmonic models of the HTSC based on the account of
anharmonic motion of apical oxygen [16]. However, it should be noted that recent studies by pulsed neutron scattering
suggest that it is the in-plane Cu site rather than the apical oxygen site that may be split into two positions [13].
The absence of strong apical anomalies was stated earlier in Ref. [14].
In the most cases JT (PJT) effect has been considered within standard E−e-problem [25] for Cu2+ ion in octahedral

environment (214 systems) or in square pyramidal environment [26] (123 systems). Instead of standard dx2−y2 ,
dz2 doublet some authors considered dx2−y2 , dxz, dyz manifold [27]. However, all approaches originated from the
assumption of near-degeneracy for some predominantly Cu3d-states do not agree with experimentally observed large
gap (∼ 1.5 eV ) separating ground dx2−y2 and any other Cu3d-states. Besides, any JT model approach pretending
to be universal should be originated from CuO4 center as the only common element of the crystalline and electronic
structure of all the cuprates.
A transformation of CuO4 clusters into PJT centers upon hole or electron doping to CuO2 planes is a principal

element of the so called singlet-triplet PJT (ST-PJT) center model developed in [2,18,28–32]. In addition to cuprates
like Y Ba2Cu3O6+x, La2−xSrxCuO4, La2CuO4+δ this model could be readily extended to a series of strongly corre-
lated oxides like (K,Ba)BiO3, La1−xSrxMnO3, La2NiO4+δ including systems with the high-Tc superconductivity
and colossal magnetoresistance. Their unconventional properties reflect a result of response of the system to non-
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isovalent substitution that stabilizes phases providing the most effective screening of charge inhomogeneity. These
phases in oxides can involve novel unconventional molecular cluster configurations like Jahn-Teller sp-center [28] with
anomalous high local polarizability and multi-mode behavior.
The copper oxides based on CuO4 clusters within this model are considered to be systems, which are unstable with

regard to disproportionation reaction

2CuO6−
4 →

[

CuO5−
4

]

JT
+
[

CuO7−
4

]

JT
(1)

with formation of system of polar (hole - CuO5−
4 or electron - CuO7−

4 ) pseudo-Jahn-Teller (PJT) centers. These
centers are distinguished by the so-called local S-boson or two electrons paired in the completely filled molecular
orbital of the CuO4-cluster. In other words, the novel phase can be considered to be system of local spinless bosons
moving in lattice of the hole PJT-centers

[

CuO5−
4

]

JT
or the generalized quantum lattice bose-gas (or liquid) with

boson concentration near NB = 1/2.
In a sense, this microscopic approach represents a particular generalization of Zhang-Rice model.
Though without detailed analysis of the 1A1g,

1,3Eu−a1g−b1g−b2g−eu vibronic problem, this model approach has
been successfully applied for qualitative and semi-quantitative description of many physical properties of cuprates:
MIR absorption bands [2], isotope effect [32], static and dynamic magnetic properties [33], local structure distortions
[34], hyperfine coupling [35], phonon anomalies [30], neutron scattering [36]. Further development of the model and,
first of all, possibilities of quantitative predictions implies a detailed analysis of the 1A1g,

1,3Eu − a1g − b1g − b2g − eu
vibronic problem. Moreover, this problem is of great independent importance as a non-trivial example of multi-mode
PJT effect.
Below, in our paper we consider in detail a vibronic structure of the isolated PJT center taking into account some

effects associated with its singlet-triplet structure and spin-orbital coupling. First, in Section 2 a short consideration
of the correlation driven near degeneracy effects for the CuO4-clusters will be done. Section 3 contains a detailed
analysis of the 1A1g,

1,3Eu − a1g − b1g − b2g − eu vibronic problem within CuO4 cluster including an adiabatic
potential, vibronic states and tunnelling effects for three different regimes. Some effects of spin-orbital coupling
within (1A1g,

1,3Eu) manifold are considered in Section 4.

II. CORRELATIONS AND THE NEAR DEGENERACY EFFECTS FOR THE CUO4 CLUSTERS.

At a glance the analysis of electronic structure and energy spectrum of the parent compounds such as
La2−xMxCuO4, Y Ba2Cu3O6+x at x = 0 does not display any exotic peculiarities except quasi-two-dimensional
antiferromagnetism determined by the strong exchange interaction for the b1g(dx2−y2) holes in the ”basic” CuO6−

4

clusters. At the same time it is worth to pay attention to one important feature, namely to the exciton-band form of
the fundamental absorption in the 1.5÷3.0 eV region strictly pronounced in the systems like R2CuO4, Y Ba2Cu3O6+x,
CuO [29].
A peculiar character of this absorption connected with the allowed charge-transfer transition b1g → eu between the

copper-oxygen b1g-hybrid and the purely oxygen eu-orbital provides evidence of the strongly correlated nature of the
eu-electrons with formal occurrence of two types of the eu-states with and without strong correlation. This peculiarity
is associated with the maximal hole density occurred for oxygen ions just in the eu-states of the CuO4-cluster and
can be easily explained in the framework of the non-rigid anionic background model [37]. This model introduces new
correlation degree of freedom with two possible states of anionic background for the valent O2p-holes corresponding
to two possible projections of the correlation pseudospin s = 1/2 and is described by simplified Hamiltonian

Hcorr = V1σ̂x + V3σ̂z , (2)

where V1,3 are two electronic operators for the valent states. Simple approximation used in [37] conjectures the linear
n2p -dependence for V1,3, where n2p is the O2p-hole number. According to optical data [29], the correlation pseudospin
splitting can achieve the value ∼ 0.5 eV .
An increase in the O2p-hole concentration with hole doping CuO6−

4 → CuO5−
4 results in a sharp increase of the eu

correlation splitting in the hole CuO5−
4 -centers with transformation of the b1g → eu fundamental band to the high-

energy (b21g) → (b1geu) subband and the low-energy b21g → b∗1ge
∗
u subband to be well known as MIR (mid-infrared)

absorption band [2].
Fig.1 shows qualitatively the main results of the taking account of the considered ”eu correlations” for energy

spectrum of basic CuO6−
4 cluster and hole CuO5−

4 cluster. It is important to mention an appearance in our model
of two types of the orthogonal (!) molecular orbitals; for instance b1g (upper correlation sublevel) and b∗1g (lower
correlation sublevel) states, eu and e∗u.
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Thus, we come to a conclusion about a near-degeneracy for two configurations b∗ 2
1g and b∗1ge

∗
u with b∗1g and e∗u

being the lowest correlation sublevels. This result does not drastically changes with taking account of an electrostatic
interaction Vee between two holes. Moreover, just the Vee contribution was considered earlier [2] as a main reason
for a near-degeneracy for the 1A1g and 1,3Eu terms formed by b∗ 2

1g and b∗1ge
∗
u configurations. So, the both correlation

effects lead to a near-degeneracy in ground state of the hole center CuO5−
4 .

Unusual properties of the (1A1g,
1,3Eu) manifold involving terms distinguished by the spin multiplicity, parity and

orbital degeneracy provides unconventional behavior for the hole center CuO5−
4 with active interplay of various modes.

As an extremely important result one should note that Eu-doublet has a nonquenched Izing like orbital moment that
can be directed only along the C4-axis.
A near degeneracy within (1A1g,

1,3Eu) manifold can lead to conditions for the pseudo-Jahn-Teller effect [25] with
anomalously strong electron-lattice correlations with active local displacements modes of the Qeu , Qb1g and Qb2g

types. It should be noted here that the Qeu modes are the only hybrid copper-oxygen modes, while the Qb1g and Qb2g

modes are the pure oxygen ones.

III. VIBRONIC COUPLING FOR THE CUO5−
4 CENTERS.

A. Adiabatic potential.

Below we’ll make use the notation |SMSΓγ〉 for basis wave functions from the (1A1g,
1,3Eu) manifold (see Fig.1).

Here, S (= 0, 1), MS are the total spin and its projection, Γγ (= A1g, E
x
u , E

y
u) labels the irreducible representation

of symmetry group D4h for the CuO4 center and its row, respectively, indicating the transformation properties of
the orbital functions. Subsequently, we restrict ourselves with the linear vibronic coupling within the (1A1g,

1,3Eu)
manifold with the JT-active vibrational coordinates of the a1g, b1g, b2g, eu symmetry.
Vibronic coupling for the isolated singlet or triplet 1,3Eu term has a well known for the E − b1 − b2-problem [25]

form diagonal in S and MS

(

V τ
b1g
Qb1g V τ

b2g
Qb2g

V τ
b2g
Qb2g −V τ

b1g
Qb1g

)

, τ = 1Eu,
3Eu. (3)

Singlet terms 1Eu and 1A1g interact due to linear vibronic coupling

〈

00A1g|V̂vib|00Ei
u

〉

=
∑

eu

VeQeiu
(4)

determined by active vibrational coordinates Qexu
, Qe

y
u
. For the CuO4 cluster there are three normal coordinates with

eu symmetry, however, below we restrict ourselves with the choice of one active eu vibration with an appropriate
linear vibronic coupling constant Ve.
The sum of elastic energy V̂Q, electronic Hamiltonian V̂el, and vibronic Hamiltonian V̂vib for the singlet S = 0 spin

manifold (1A1g,
1Eu) with bare separation ∆AE (see Fig.1) could be written as:

Û(Q) =
∑

i

ω2
iQ

2
i

2
· Î +





−∆+ VzQz VeQx VeQy

VeQx VαQα VβQβ

VeQy VβQβ −VαQα



 , (5)

where the indices both for the coupling coefficient and normal coodinates are defined as follows: a1g → z, exu → x,

eyu → y, b1g → α, b2g → β, and ∆ = ∆AE − Vzq
(0)
z , Vz = V

A1g
z − V Eu

z , q
(0)
i = Vi/ω

2
i .

An important information for the PJT center could be obtained with examination of the adiabatic potential (AP)

surfaces ε(Q), which are the roots of characteristic equation for Û(Q). In our case this is reduced to a cubic equation
with an extremely complicated expression for the roots. The coordinates of the minima Q0, energy and structure of
electronic wave function at Q0 and curvature of energy surface near Q0 can be obtained by the Opik-Pryce method
[38], where an eigenvalue problem is treated only for extremal points of the AP. It should be noted that the Opik-Pryce
method does not permit to find specific points of the AP without definite values of the derivative, however namely
such a situation occurs for the upper sheets of the AP. The type of minima can be derived from curvature analysis
for ε(Q) near Q0.
The relations between the extremum coordinates and the wave function coefficients are
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Q0
z = −q(0)z z2, Q0

x = −2q(0)e zx, Q0
y = −2q(0)e zy, (6)

Q0
α = −q(0)α

(

x2 − y2
)

, Q0
β = −2q

(0)
β xy,

where we have denoted the coefficients of decomposition of the electronic wave function as z, x and y for
|00A1g〉 , |00Ex

u〉 and |00Ey
u〉, respectively. The eigenvalue problem for Vvib in the AP extremum points is given

by:





−∆− 2Ez
JT z2 −4Ee

JT zx −4Ee
JT zy

−4Ee
JT zx −2Eα

JT

(

x2 − y2
)

−4Eβ
JT xy

−4Ee
JT zy −4Eβ

JT xy 2Eα
JT

(

x2 − y2
)









z
x
y



 = λ





z
x
y



 , (7)

where Ei
JT = 1

2Viq
(0)
i = V 2

i /2ω
2
i is the specific JT energy.

The system (7) complemented with a normalization condition x2 + y2 + z2 = 1 has 13 solutions, which are listed in
the Table I. Also the expressions for the quadratic form of the AP surface near the extremal points are given. These
solutions could be divided into three groups.
1. The first group NJT (non-JT) contains the only solution. Electronic part of wave function in the extremal point

is pure |00A1g〉. The NJT-extremum is the minimum on lower sheet of AP, if b < 0 (b = −∆+4Ee
JT −2Ez

JT ) or on the
upper sheet, if (∆ + 2Ez

JT ) < 0. In both cases the weak pseudo-Jahn-Teller effect takes place, when due to weakness
of the vibronic coupling in comparison with the bare separation of electronic levels ∆, there are no low-symmetry
distortions of the CuO4 cluster, and only the renormalization of the local eu vibration frequency occurs:

(

ω̃(NJT )
e

)2

= ω2
e (1− ηz) , ηz =

4Ee
JT

∆+ 2Ez
JT

. (8)

2. The second group JTi (i = α, β) contains four solutions, which are similar to results of the well-known E−b1−b2-
problem. The wave function at the extremum points is a pure Eu superposition. In further analysis the rhombic mode
with larger JT energy will be called the ”strong” (σ) mode, and that with smaller JT energy will be called the ”weak”

(σ′) one: Eσ
JT > Eσ′

JT , (σ, σ
′ = α, β); for the E − b1 − b2-problem the Eσ

JT is the JT stabilization energy. Among four
extremum points only the JTσ pair will correspond to minima. The minima are located on the lower sheet of the
AP, if aσ < 0 (aσ = ∆+ 4Ee

JT − 2Eσ
JT ), and on the middle one, if (∆− 2Eσ

JT ) > 0. The JTσ′ pair represents saddle

points. The wave functions at the minima are orthogonal each other. If Eσ
JT = Eσ′

JT , the equipotential continuum of
minima, or trough, exists. The σ mode frequency does not vary, and that of σ′ mode is renormalized due to vibronic
coupling:

ω̃2
σ = ω2

σ , ω̃2
σ′ = ω2

σ′ (1− λσ) , λσ =
Eσ′

JT

Eσ
JT

. (9)

It should be noted here that a type (B1g or B2g) of the ground JT mode is of principal importance for the physics of
the copper oxides. This is determined by the competition of vibronic parameters for the Cu3d−O2p and O2p−O2p
bonds minimizing the B1g and B2g modes, respectively.
For the eu vibrations the JTi solutions correspond to the weak PJT effect: only renormalization of local eu vibration

occurs. If α mode is strong, the coordinates of minimum determine the rhombic distortion of the CuO4 cluster along
x- or y -direction (Fig.2). Accordingly, the softening of the exu or eyu vibration occurs; but as the both minima are
equivalent, the frequencies of local eu modes remain twice degenerate. In a case of ”strong” β mode with rectangular
distortion of the CuO4 cluster, the softening of that of eu modes occurs, which co-directs to the cluster distortion. In
all cases the expression for the renormalized local eu mode frequency is written as:

(

ω̃(JT )
e

)2

= ω2
e (1− κσ) , κσ =

4Ee
JT

−∆+ 2Eσ
JT

. (10)

3. The third group PJTi (i = α, β) includes eight solutions and corresponds to the most complicated case of the
strong pseudo-Jahn-Teller effect. In this case the wave functions at the extremum points are the A1g − Eu hybrid
states, and coefficients of superposition depend on the bare splitting ∆ and the JT energies. The four from the eight
PJTσ extrema (σ is the ”strong” rhombic mode) are minima, if aσ > 0 and ḃ > 0. All the PJTσ minima are equivalent
and allocated on the lower sheet of the AP. An arrangement of minima in space of the normal coordinates of the CuO4

cluster is schematically shown in Fig.3. The wave functions at the minima are not orthogonal each other, that is a
characteristic feature of strong pseudo-Jahn-Teller effect. The four PJTσ′ extrema (σ′ is the ”weak” rhombic mode)
are saddle points. A specific case of degeneracy for the JT energies of rhombic modes should be examined separately.
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The rhombic distortion of the CuO4 cluster at the minimum points with the nonzero plane quadrupole moment
is accompanied by the co-directed eu distortion with the electric dipole moment. The possible PJTσ distortions are
shown in Fig.2.
Close to minimum M the equipotential surface of the quadratic form ε(Q−Q(0,M)) is a five-dimensional ellipsoid

with center located at Q(0,M) and principal axes to be turned with regard to basic ones. The σ mode at minimum is
mixed with co-directed eu mode and a1g mode giving rise to three local hybrid modes. The σ′ mode is mixed with
the second eu mode giving rise to two local hybrid modes. The mixing coefficients are proportional to the appropriate
vibronic coupling constants.
In a case, when Vz = 0, the frequencies of normal local hybrid modes are written as:

(

Qσ′ , Q̃1

)

: ω2
± =

A+ B

2
±

√

(

A−B

2

)2

+ C2 , (11)

where

A = ω2
e

(

1− υ2σ
)

, B = ω2
σ′

(

1− ρ2σ
)

, C = ωeωσ′υσρσ,

υσ =

√

Ee
JT aσ

Ee
JT aσ + Eσ

JT b
, ρσ =

√

Eσ′

JT b

Ee
JT aσ + Eσ

JT b
,

and

(

Qσ, Q̃2

)

: ω′ 2
± =

D + E

2
±

√

(

D − E

2

)2

+ F 2 , (12)

where

D = ω2
e

(

1− ν2σ
)

, B = ω2
σ

(

1− µ2
σ

)

, F = ωeωσνσµσ,

µσ =

√

Eσ
JT aσb

Ee
JT (aσ + b)

2 , νσ =
aσ − b

aσ + b
.

For the minima 1 and 3 Q̃1 = Qx, if σ = α (Q1, if σ = β), Q̃2 = Qy, if σ = α (Q2, if σ = β); for minima 2 and

4 Q̃1 = Qy, if σ = α (Q2, if σ = β), Q̃2 = Qx, if σ = α (Q1, if σ = β). Due to an equivalence of minima all local
frequencies coincide.
The type of minima on the lower AP sheet will be determined mainly by following quantities:

aσ = ∆+ 4Ee
JT − 2Eσ

JT , b = −∆+ 4Ee
JT − 2Ez

JT (13)

in the following way:
a) NJT, if aσ > 0 and b < 0;
b) JTσ, if aσ < 0 and b > 0;
c) PJTσ, if aσ > 0 and b > 0;
d) NJT and JTσ, if aσ < 0 and b < 0.

The diagram of states of the lower AP sheet in space of parameters ∆, Eσ
JT and Ee

JT at constant value of Ez,0
JT is

shown in Fig.4. A cross-section of the parameter space for constant value of Ee
JT is shown in Fig.5a. If ∆ → +∞, the

lowest 1A1g level is well isolated and the lower AP sheet has a trivial NJT minimum. In contrast, at ∆ → −∞ the
1Eu term becomes the lower one and usual E − b1 − b2-problem with two JTσ minima on the lower AP sheet occurs.
When coming together, the 1A1g and 1Eu terms are mixed by the eu mode, and the eu frequency is renormalized.
This is accompanied by a formation of four PJTσ minima or three (NJT+JTσ) minima depending on magnitude of

Eσ
JT . These two possibilities correspond to lines Eσ

JT = Eσ,1
JT and Eσ

JT = Eσ,2
JT in Fig.5a.

With a motion along the line Eσ
JT = Eσ,1

JT from −∞ up to +∞ the curvature of the JTσ minima along eu directions
decreases up to zero on the line aσ = 0. At this point the JTσ minima transform into saddle points with simultaneous
appearence of the PJTσ minima (one of the JTσ minima splits along Q1, another one splits along Q2 direction).
Moving from the line aσ = 0 up to b = 0 the magnitude of rhombic distortion decreases up to zero on the line b = 0.
The magnitude of eu coordinates of minima firstly increases, then decreases up to zero, reaching a maximum on the

line ∆ = −Eσ
JT + Ez

JT . The Qz coordinate increases linearly (∼ aσ) from zero up to −q(0)z on the line b = 0. Thus,
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the four PJTσ minima transform into one NJT minimum. Further, with ∆ → +∞ the A1g and Eu terms interact
weaker and ω̃e → ωe.
The PJTσ minima occur, if the eu mode driven interaction of the A1g and Eu terms is rather effective. When

Eσ
JT > 4Ee

JT −Ez
JT (for example Eσ

JT = Eσ,2
JT ), the σ mode driven interaction becomes more effective. In this case at

b = 0 the NJT minimum appears on the lower AP sheet together with JTσ minima. All three minima have the same
energy on the line ∆ = −Eσ

JT +Ez
JT . Further, at ∆ → +∞ the JTσ minima become more flat, without varying their

coordinates, and at aσ = 0 only the NJT minimum remains.
In Fig.5b the diagram of the upper AP sheets is shown.

B. Tunnel splitting.

The most complicated case of strong pseudo-Jahn-Teller effect can be treated in a framework of the tunnel Hamilto-
nian [39],when the localized vibrations at the AP minima are considered with taking account of the inter-well tunneling.
It is supposed, that the minimum depth is larger than the typical phonon energy, hence the tunnel frequency is rather
small.
We consider the minimization problem for the total energy functional E [Ψ] =

〈

Ψ
∣

∣

∣Ĥ
∣

∣

∣Ψ
〉

with Hamiltonian

Ĥ = T̂Q + V̂el + V̂Q + V̂vib , (14)

where T̂Q is kinetic energy of nuclei, V̂el is electronic energy operator, V̂Q is elastic energy, V̂vib is vibronic Hamiltonian.
The Ψ is written as

Ψ =
4
∑

M=1

cM ϕ
(σ)
M χ

(σ)
M , (15)

where ϕ
(σ)
M and χ

(σ)
M are electronic (see Table I) and vibrational wave functions, respectively, centered at the minimum

PJT
(M)
σ . The ground state vibrational wave function χ

(σ)
M has a form

χ
(σ)
M =

5
∏

k=1

(

ωM
k

π

)

1
4

exp











−1

2
ωM
k





5
∑

j=1

UM
jk

(

Qj −Q
(0,M)
j

)





2










, (16)

where
(

ωM
k

)2
are the eigenvalues of a matrix of the quadratic form ε

(

Q−Q(0,M)
)

, UM is matrix for the unitary

transformation to principal axes for ε
(

Q−Q(0,M)
)

. If Vz = 0, the frequencies ωM
k are equal to ω± Eq. (11), ω′

± Eq.
(12) and ωz, respectively.
The variation of the energy functional E [Ψ] gives

H ~c = E S ~c, (17)

where H and S are the Hamiltonian Eq. (14) and overlap matrix, respectively. The solutions of the system Eq. (17)
give the tunnel states and the tunnel energy levels, respectively.
Due to equivalence of the PJTσ minima the H and S matrices include only three types of the non-zero matrix

elements:
a) the diagonal matrix elements:
〈

ϕ
(σ)
M χ

(σ)
M

∣

∣

∣Ĥ
∣

∣

∣ϕ
(σ)
M χ

(σ)
M

〉

= H,
〈

ϕ
(σ)
M χ

(σ)
M |ϕ(σ)

M χ
(σ)
M

〉

= 1;

b) the non-diagonal matrix elements for the states with different both dipole and quadrupole moments:
〈

ϕ
(σ)
M χ

(σ)
M

∣

∣

∣Ĥ
∣

∣

∣ϕ
(σ)
M+1 χ

(σ)
M+1

〉

= Hq,
〈

ϕ
(σ)
M χ

(σ)
M |ϕ(σ)

M+1 χ
(σ)
M+1

〉

= Sq;

c) the non-diagonal matrix elements for the states with different dipole moment but the same quadrupole one:
〈

ϕ
(σ)
M χ

(σ)
M

∣

∣

∣Ĥ
∣

∣

∣ϕ
(σ)
M+2 χ

(σ)
M+2

〉

= Hd,
〈

ϕ
(σ)
M χ

(σ)
M |ϕ(σ)

M+2 χ
(σ)
M+2

〉

= Sd.

The explicit expressions for these quantities at Vz = 0 are listed in Table II. Thus, the system Eq. (17) is written
as:
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H Hq Hd Hq

Hq H Hq Hd

Hd Hq H Hq

Hq Hd Hq H













c1
c2
c3
c4






= E







1 Sq Sd Sq

Sq 1 Sq Sd

Sd Sq 1 Sq

Sq Sd Sq 1













c1
c2
c3
c4






(18)

with eigenvectors

~c1 =
1

2
(1, 1, 1, 1) , ~c1 =

1

2
(1,−1, 1,−1) ,

~c3 =
1√
2
(− sin θ, cos θ, sin θ,− cos θ) , (19)

~c4 =
1√
2
(cos θ, sin θ,− cos θ,− sin θ)

Vectors ~c3 and ~c4 are degenerated, hence there is a freedom in choice of θ. We assume θ = 0, then

∣

∣ΨA1g

〉

= cσ |A1g〉 χa1g +
dσ√
2

{∣

∣

∣E(1)
u

〉

χ
e
(1)
u

+
∣

∣

∣E(2)
u

〉

χ
e
(2)
u

}

,

∣

∣ΨΣ

〉

= −cσ |A1g〉 χΣ − dσ√
2

{∣

∣

∣E(1)
u

〉

χ
e
(1)
u

−
∣

∣

∣E(2)
u

〉

χ
e
(2)
u

}

, (20)

∣

∣

∣
Ψ

E
(1)
u

〉

= cσ |A1g〉 χe
(1)
u

+
dσ√
2

∣

∣

∣
E(1)

u

〉

{

χa1g + χΣ

}

,

∣

∣

∣Ψ
E

(2)
u

〉

= cσ |A1g〉 χe
(2)
u

+
dσ√
2

∣

∣

∣E(2)
u

〉

{

χa1g − χΣ

}

,

where functions
{∣

∣

∣E
(1)
u

〉

,
∣

∣

∣E
(2)
u

〉}

coincide, respectively, with {|00Ex
u〉 , |00Ey

u〉}, if σ = α or with {(|00Ex
u〉 +

|00Ey
u〉)/

√
2, (− |00Ex

u〉+ |00Ey
u〉)/

√
2}, if σ = β. Symmetric combinations of vibrational functions are:

χa1g =
1

2

(

χ
(σ)
1 + χ

(σ)
2 + χ

(σ)
3 + χ

(σ)
4

)

, χ
e
(1)
u

=
1√
2

(

χ
(σ)
2 − χ

(σ)
4

)

, (21)

χΣ =
1

2

(

−χ(σ)
1 + χ

(σ)
2 − χ

(σ)
3 + χ

(σ)
4

)

, χ
e
(2)
u

=
1√
2

(

χ
(σ)
1 − χ

(σ)
3

)

.

The symmetry Σ of the vibronic and vibrational functions coincide with that of σ mode. With taking account of the
normalization for tunnel states

N2
A1g

=
〈

ΨA1g |ΨA1g

〉

= 1 + 2Sq + Sd ,

N2
Eu

=
〈

Ψ
E

(1)
u

|Ψ
E

(1)
u

〉

= 1− Sd , (22)

N2
Σ = 〈ΨΣ|ΨΣ〉 = 1− 2Sq + Sd ,

we come to following expressions for the tunnel energy levels:

EA1g =
H + 2Hq +Hd

1 + 2Sq + Sd

, EEu
=
H −Hd

1− Sd

, EΣ =
H − 2Hq +Hd

1− 2Sq + Sd

. (23)

These are shown in Fig.6 as a function of ∆ with dimensionless coupling constant ke = 3. The frequencies of
tunneling between the equivalent distorted configurations of the CuO4 cluster are determined by the splittings of the
tunnel energy levels, which are much less than typical phonon energies. It should be noted, that for the pseudo-Jahn-
Teller effect the symmetry of the ground vibronic and bare electronic states could be different unlike the conventional
Jahn-Teller effect (”Ham’s law”) [40]. Fig.6 illustrates the situation, when ∆ < 0 (electronic 1A1g level is higher than
1Eu), but EA1g < EEu

. The reason is that in the pseudo-effect the vibronic interaction mixes different electronic
levels, contrary to a case of the degenerated electronic states. It is worthy to note that in our case the vibronic Σ
level is always higher in energy than the A1g and Eu ones.
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C. Degeneracy of JT energies for rhombic modes.

When Eα
JT = Eβ

JT (and with aσ > 0, b > 0) the trough of minima appears on the lower AP sheet. It is a curve in
four-dimensional space, which has following parametric form:

Qz = −q(0)z cσ, Qx = −2q(0)e cσdσ cos
ϕ

2
, Qy = −2q(0)e cσdσ sin

ϕ

2
, (24)

Qα = −2q(0)σ d2σ cosϕ, Qβ = −2q(0)σ d2σ sinϕ,

where cσ =
√

aσ

aσ+b
, dσ =

√

b
aσ+b

. The energy and wave function are

ε0 = −Eσ
JT − 1

2
c2σaσ (25)

|Φ〉 = cσ |A1g〉+ dσ

(

cos
ϕ

2
|Ex

u〉+ sin
ϕ

2
|Ey

u〉
)

,

respectively. The CuO4 cluster distortions as a function of ϕ are shown in Fig.7.
For JTσ case, when cσ = 0, the situation is similar to the E−e-problem with the doublet ground vibronic state. Its

type are not changed in PJTσ case, if cσ ≪ 1. However, with the increasing of cσ from the one hand the continuum of
E−e type splits into two parts in eu direction and from the other hand the A1g−Eu mixing reduces the symmetry of
electronic wave function resulting in a singlet ground state. The potential energy in a small vicinity of the continuum
minima is

ε = ε0 +
ω2
zq

2
z

2
+
Dr2

2
+
Eρ2

2
− Frρ , (26)

where qz, r and ρ are count out from

Q(0)
z = −q(0)z c2σ , r0 = −2q(0)e cσdσ , ρ0 = −q(0)σ d2σ .

The radial vibration frequencies along the principal directions of the quadratic form Eq. (26) are ω′
+ and ω′

− Eq.
(12), respectively. If r20 + ρ20 ≫ h̄/ω′

−, ε0 ≫ h̄ω′
+, then the energy and wave function of the ground vibronic singlet

are

E0 = ε0 +
h̄

2

(

ω′
+ + ω′

−
)

, |Ψ0〉 = |Φ〉 χ0 (r+) χ0 (ρ−)
√

2π (r0 + r) (ρ0 + ρ)
, (27)

where χ0 is the ground state vibrational function.
If the parameters approach to those typical for the NJT situation, the radius of trough is small, so the rotational

term is not a small perturbation. The energy barrier in the higher symmetry point lowers, and the system turns into
vibrational regime near the NJT minima with a singlet ground state, which is not described by the Eq. (27).

IV. VIBRONIC STATES IN PRESENCE OF THE SPIN-ORBIT COUPLING.

Without taking account of the spin-orbit coupling the 3Eu term is isolated, and it has the six-fold degenerated
ground vibronic state. The spin-orbit coupling mixes the MS = 0 states of the 3Eu and 1Eu terms. As well, this
coupling splits lower vibronic states of the 3Eu term, which have MS = ±1.

A. The MS = 0 states.

1. Well-isolated 1,3Eu terms.

If the 1A1g and 1,3Eu terms are well separated in energy (∆AE ≫ ∆E , λ), it is possible to consider the AP within a
basis of the |00Ex

u〉, |00Ey
u〉, |10Ex

u〉, |10Ey
u〉 states, and then take into account the vibronic coupling with the of 1A1g

term as perturbation. The potential energy matrix Û(Q) acquires a form:
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∑

i

ω2
iQ

2
i

2
· Î +







−∆E + VαQα VβQβ 0 −iλ
VβQβ −∆E − VαQα iλ 0
0 −iλ ∆E + VαQα VβQβ

iλ 0 VβQβ ∆E − VαQα






, (28)

where λ is submatrix element of the spin-orbit coupling. The eigenvalues and eigenvectors of Û(Q) are written as
follows

ε1 = Σ−
√

(∆E + ρ)
2
+ λ2, |1〉 = −i sin η1 |−ρ, 0〉+ cos η1 |ρ, 1〉 ,

ε2 = Σ−
√

(∆E − ρ)2 + λ2 , |2〉 = i sin η2 |ρ, 0〉+ cos η2 |−ρ, 1〉 ,
ε3 = Σ+

√

(∆E − ρ)
2
+ λ2 , |3〉 = cos η2 |ρ, 0〉+ i sin η2 |−ρ, 1〉 ,

ε4 = Σ+

√

(∆E + ρ)
2
+ λ2 , |4〉 = cos η1 |−ρ, 0〉 − i sin η1 |ρ, 1〉 ,

(29)

where

Σ =
∑

i

ω2
iQ

2
i

2
, ρ =

√

(VαQα)
2
+ (VβQβ)

2
, (30)

|ρ, S〉 = cos θ |S0Ex
u〉+ sin θ |S0Ey

u〉 ,
|−ρ, S〉 = − sin θ |S0Ex

u〉+ cos θ |S0Ey
u〉 ,

tan 2θ =
VβQβ

VαQα

tan 2η1 =
λ

−∆E − ρ
, tan 2η2 =

λ

−∆E + ρ
.

The minima of the lower AP sheet are located on Qσ axis (with Eσ
JT > Eσ′

JT , σ, σ
′ = α, β) at points, which represent

solutions of the equation:

|Qσ|
q
(0)
σ

=

(

1 +
λ2

(Vσ |Qσ|+∆E)
2

)− 1
2

. (31)

The QΓγ = 0 is a point of discontinuity of the derivative. The non-trivial minima, which correspond to the low-
symmetry cluster distortions, exist for the arbitrary large λ, if ∆E 6= 0, but with λ → ∞ the minima depth and the
distortions magnitude become negligibly small. The ground vibronic state is twice degenerated. In strong coupling
scheme this is realized due to orthogonality of electronic states belonging to different minima of AP. In a case λ≪ Eσ

JT

the expressions for the minimum points and their energy are written as follows:

Qσ = ±q̃(0)σ , q̃(0)σ = q(0)σ

(

1− λ2

2 (∆E + 2Eσ
JT )

2

)

, (32)

ε0 = −∆E − Eσ
JT − λ2

2 (∆E + 2Eσ
JT )

.

The mixing coefficient for the triplet spin states with the singlet 1A1g term wave function is proportional to

λ

∆E +∆AE + Ee
JT

. (33)

2. Strong PJT-effect for the singlet spin states.

In this case it is neccessary to consider the spin-orbit mixing of the tunnel states with lower vibronic states of 3Eu

term. The only non-zero matrix elements are those between the tunnel Eu-states and the lower vibronic states of 3Eu

term with MS = 0. The effective Hamiltonian matrix is







−∆′
E 0 0 −iλ′

0 −∆′
E iλ′ 0

0 −iλ′ ∆′
E 0

iλ′ 0 0 ∆′
E






, (34)
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where 2∆′
E is an appropriate energy splitting, λ′ is a modified matrix element of the spin-orbit coupling:

λ′ = λ N−1
Eu

√
2dσ

〈

χ
(σ)
M |χ̃(σ)

0

〉

, (35)

where χ
(σ)
M and χ̃

(σ)
0 are the ground state vibrational functions, which are centered at the minimum M of PJTσ type

and at the minimum of AP of the E − b1 − b2-problem with opposite to M sign of σ mode, respectively.

3. The singlet-triplet asymmetry of the vibronic coupling.

Let the difference in the linear vibronic coupling constants for the singlet 1Eu and triplet 3Eu states corresponds to

the following inequalities for the JT energies: Eα
JT (

1Eu) > Eβ
JT (

3Eu) and E
α
JT (

1Eu) < Eβ
JT (

3Eu). Then the minima
of AP for the 1Eu term are located on the Qα axis, and those of the 3Eu therm are located on the Qβ axis. If
the surfaces of AP for different terms intersect, than the taking account of the spin-orbit coupling could result in a
complicated form of the AP with four minima. The states in minima located on the same axis are orthogonal to each
other, and those located on different axis are not. Hence, even if ∆E = 0 the lower vibronic states are two doublets,
which are separated by the tunnel splitting ∆̃. The frequency related to ∆̃ corresponds to the combined pulsing
motion of the electronic and nuclear density between b1g and b2g distortions of the CuO4 cluster.

B. The MS = ±1 states.

A joint operation of the vibronic and spin-orbital coupling for the MS = ±1 states within the 3Eu term is described
by the matrix

VαQασ̂z + VβQβσ̂x + iMSλ1σ̂y , (36)

where λ1 is a submatrix element for the spin-orbital coupling within the orbital part of the 3Eu manifold, σ̂i are the
Pauli matrices, and the energy is counted off the 3Eu manifold.
The lower AP sheet has four extrema at points

q
(0,±)
i = ±li

√

2Ẽi
JT (1− p2i ) , i = α, β, (37)

where li =
√

h̄/ωi, Ẽ
i
JT = Ei

JT /h̄ωi, pi = λ1/2E
i
JT , and q

(0,±)
i = 0 at |pi| ≥ 1. The parameter pi equals to the ratio

of the Eu level splitting due to the spin-orbital coupling (2λ1) to that of due to the vibronic coupling (4Ei
JT ). At

|pi| ≥ 1 (i = α, β) we come to the weak pseudo-Jahn-Teller effect with the only minimum at q
(0,±)
i = 0 (i = α, β) and

effective local vibration frequencies

ω̃2
i = ω2

i

(

1− |pi|−1
)

. (38)

At |pi| ≤ 1 ( Eσ
JT > Eσ′

JT ) the strong pseudo-Jahn-Teller effect occurs with the AP minima at q
(0,±)
σ , and with the

AP saddle points at q
(0,±)
σ′ . The effective frequencies for the local vibrations at the AP minima and corresponding

energies are derived as follows:

ω̃2
σ = ω2

σ

(

1− p2σ
)

, ω̃2
σ′ = ω2

σ′ (1− λσ) , λσ =
Eσ′

JT

Eσ
JT

, (39)

ε−

(

q(0,±)
σ

)

= −Eσ
JT − h̄ωσpσ .

As is seen, unlike the usual E−b1−b2-problem, the σ mode frequency is renormalized due to the spin-orbital coupling.

The electronic wave functions ϕ
(MS)
± at the minima q

(0,±)
σ are reduced to the following form:

ϕ
(MS)
+ =

1√
2

(

i MS

√

1−
√

1− p2σ

∣

∣

∣E(1)
u

〉

+

√

1 +
√

1− p2σ

∣

∣

∣E(2)
u

〉

)

, (40)

ϕ
(MS)
− =

1√
2

(
√

1 +
√

1− p2σ

∣

∣

∣
E(1)

u

〉

− i MS

√

1−
√

1− p2σ

∣

∣

∣
E(2)

u

〉

)

.
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In contrast to the above considered E−b1−b2-problem, the spin-orbital coupling now results in the non-orthogonality
of the wave functions located in the minima:

〈

ϕ
(MS)
+ |ϕ(MS)

−

〉

= −i MS pσ (41)

that leads to the tunnel splitting.
Varying the energy functional with the basis functions

Ψ = a ϕ
(MS)
+ χ+ + b ϕ

(MS)
− χ−, (42)

where χ± are the vibrational functions centered at q
(0,±)
σ , results in a matrix equation:

(

H++ H+−
H∗

+− H++

)(

c1
c2

)

= E

(

1 S+−
S∗
+− 1

)(

c1
c2

)

, (43)

where

S =
〈

ϕ
(MS)
+ χ+|ϕ(MS)

− χ−

〉

= −i MS pσ exp
[

−2Ẽσ
JT

(

1− p2σ
)

3
2

]

, (44)

H++ = h̄ωσ

[

2− p2σ
4
√

1− p2σ
− Ẽσ

JT

(

1 + p2σ
)

]

+ h̄ωσ′

2− λσ

4
√
1− λσ

,

H+− = (H++ − h̄ωσB)S , B = Ẽσ
JT

(

1− p2σ
) (

2− p2σ
)

.

The tunnel level energies and tunnel splitting are determined as follows:

Eg = H++ − h̄ωσB |S|
1 + |S| , Eu = H++ +

h̄ωσB |S|
1− |S| , (45)

∆1 = Eg − Eu = 2h̄ωσ

B |S|
1− |S|2

.

Appropriate vibronic wave functions can be represented as:

Ψ(1)
g = Ng

(

ϕ
(1)
+ χ+ + iϕ

(1)
− χ−

)

, Ψ(1)
u = Nu

(

iϕ
(1)
+ χ+ + ϕ

(1)
− χ−

)

, (46)

Ψ(−1)
g = Ng

(

iϕ
(−1)
+ χ+ + ϕ

(−1)
− χ−

)

, Ψ(−1)
u = Nu

(

ϕ
(−1)
+ χ+ + iϕ

(−1)
− χ−

)

,

where

Ng =
1

√

2 (1 + |S|)
, Nu =

1
√

2 (1− |S|)
.

In the limit |pσ| ≪ 1 for the magnitude of tunnel splitting one obtains:

∆1 = 2λ1 exp
(

−2Ẽσ
JT

)

, (47)

that might be interpreted as a result of vibronic reduction for the purely spin-orbital splitting.

V. REDUCTION FACTORS.

A concept of vibronic reduction is widely used in a theory of the Jahn-Teller effect. The reduction factor is equal
to a ratio of the reduced matrix element of the electronic operator, which is calculated for vibronic ground states, to
this one for the bare electronic states. In a case of the pseudo-Jahn-Teller effect the vibronic reduced matrix element
is commonly a linear combination of the electronic ones.
Within the strong coupling scheme the vibronic state is written as

ΨΓγ =
1

NΓ

∑

Γ1

c (ΓΓ1)
∑

γ1Γ2γ2

ϕΓ1γ1χΓ2γ2 〈Γ1γ1Γ2γ2|Γγ〉 , (48)

12



where Γ2 ∈ Γ× Γ1, NΓ is the normalization factor; c (ΓΓ1) is the amplitude of contribution to the vibronic function
Γ, which is generated by the electronic Γ1 state; χΓ2γ2 is a symmetric linear combination of the vibrational states of
equivalent minima; 〈Γ1γ1Γ2γ2|Γγ〉 is the Clebsh-Gordan coefficient.

Consider the vibronic matrix element of electronic operator V̂Γ̃γ̃

〈

ΨΓγ

∣

∣

∣V̂Γ̃γ̃

∣

∣

∣ΨΓ′γ′

〉

=
1

NΓNΓ′

∑

Γ1Γ′

1

c(ΓΓ1) c(Γ
′Γ′

1)

〈

ϕΓ1

∥

∥

∥
V̂Γ̃

∥

∥

∥
ϕΓ1

〉

√
gΓ1

× (49)

∑

Γ2

〈

χ2
Γ2

〉

∑

γ1γ
′

1γ2

〈

Γ1γ1|Γ̃γ̃Γ′
1γ

′
1

〉

〈Γ1γ1Γ2γ2|Γγ〉 〈Γ′
1γ

′
1Γ2γ2|Γ′γ′〉 .

Here we used the Wigner-Eckart-Koster [41] theorem for the electronic matrix element in a case of the simply
reducible group:

〈

Γγ
∣

∣

∣
Γ̃γ̃
∣

∣

∣
Γ′γ′

〉

=

〈

Γ
∥

∥

∥Γ̃
∥

∥

∥Γ′
〉

√
gΓ

〈

Γγ|Γ̃γ̃Γ′γ′
〉

, (50)

and the orthogonality relation for the vibrational functions:

〈

χΓ2γ2 |χΓ′

2γ
′

2

〉

=
〈

χ2
Γ2

〉

δΓ2Γ′

2
δγ2γ

′

2
, (51)

where
〈

χ2
Γ2

〉

is the normalization factor. Applying the Wigner-Eckart-Koster theorem for the vibronic matrix element
we find for real representations:

〈

ΨΓ

∥

∥

∥V̂Γ̃

∥

∥

∥ΨΓ′

〉

=
∑

Γ1Γ′

1

KΓ̃

(

Γ Γ′

Γ1 Γ′
1

)

〈

ϕΓ1

∥

∥

∥V̂Γ̃

∥

∥

∥ϕΓ′

1

〉

, (52)

where

KΓ̃

(

Γ Γ′

Γ1 Γ′
1

)

=

√
gΓgΓ′

NΓNΓ′

(−1)Γ+Γ̃+Γ1c(ΓΓ1) c(Γ
′Γ′

1)× (53)

∑

Γ2

(−1)Γ2
〈

χ2
Γ2

〉

[

Γ Γ̃ Γ′

Γ′
1 Γ2 Γ1

]

.

Here [] is the 6Γ-symbol for point group G [42]. The factor (−1)Γ is 1 for all irreducible represenation of D4h except
(−1)A2g = −1 [43]. In the usual Jahn-Teller situation Eq. (53) gives the well-known result for the vibronic reduction
factors [44]. Note that

KΓ̃

(

Γ Γ′

Γ1 Γ′
1

)

= (−1)Γ+Γ′+Γ1+Γ′

1 KΓ̃

(

Γ′ Γ
Γ′
1 Γ1

)

. (54)

In our problem Γ1,Γ
′
1 = A1g, Eu; Γ,Γ′,Γ2,Γ

′
2 = A1g,Σ, Eu; only the operators of symmetry Γ̃ =

A1g, A2g, B1g, B2g, Eu have the non-zero matrix elements. The non-trivial reduction factors are given in Table III; the
remaining ones could be derived with help of Eq. (54). The reduction factors as functions of ∆ are shown in Fig.8a.
One can see that Σ′ operators are reduced very strongly. With an increase in the vibronic coupling the reduction
factors tend to their limit values (Fig.8b), which can be obtained from Eq. (53) with NΓ → 1,

〈

χ2
Γ2

〉

→ 1.

The components of external electric field parallel to the CuO4 cluster plane ( ~E ⊥ C4) induce an electro-dipole
transitions between tunnel A1g and Eu states. The reduced vibronic matrix element of the Eu operator is written as:

〈

ΨA1g

∥

∥

∥V̂Eu

∥

∥

∥ΨEu

〉

=
cσdσ

NA1gNEu

(〈

χ2
A1g

〉

+
〈

χ2
Eu

〉

) 〈

A1g

∥

∥

∥V̂Eu

∥

∥

∥Eu

〉

. (55)

Thus, at strong vibronic coupling (NΓ → 1,
〈

χ2
Γ2

〉

→ 1) and at cσ = dσ = 1/
√
2 the matrix element of electro-dipole

transition is not renormalized.
For the singlet Eu states an orbital contribution to the Zeeman energy is not zero only for the non-zero values of the

z-component of external magnetic field. This situation could be examined with a help of an effective spin Hamiltonian
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for the non-Kramers doublet [45]. The vibronic coupling results in an essential renormalization of reduced matrix
element of the z-component of angular momentum:

〈

ΨEu

∥

∥

∥V̂A2g

∥

∥

∥ΨEu

〉

=

√
2d2σS

n
q

N2
Eu

〈

Eu

∥

∥

∥V̂A2g

∥

∥

∥Eu

〉

. (56)

In this case the vibronic reduction factor is proportional to overlap integral Sn
q of the vibrational states centered at

neighboring minima on the lower AP sheet. With the increasing in the vibronic coupling Sn
q → 0, that leads to a

complete quenching of the angular momentum.

VI. SPIN HAMILTONIAN OF THE PJT CENTER.

A detailed pattern of the energy spectrum in external magnetic field and magneto-resonance properties of the PJT
centers are substantially depend on the bare A − E splitting ∆, vibronic parameters and relative magnitude of the
vibronic and spin-orbital coupling.
However, some common features are determined only by the symmetry considerations, in particular, by the C4

axial symmetry and specific properties of the bare electronic basis functions. So, the orbital doublet 1,3Eu terms are
characterized by the nonquenched highly anisotropic (Izing like) effective orbital moment l̃ = 1/2 oriented only along
the C4 axis.
Without taking account of vibronic coupling the effective spin Hamiltonian for the 1,3Eu terms could be represented

as follows:

H = λ1 l̃zŜz + βHzgl l̃z Î + 2β
∑

i=x,y,z

HiŜi, (57)

where β is the Bohr magneton, Ŝi are spin matrices (S = 0 for the spin singlet 1Eu term), gl is an effective orbital g
-factor for the 1,3Eu term, which magnitude is determined by the structure of electronic eu function. Here, the first
term describes the spin-orbital coupling, the second and the third ones correspond to the orbital and spin Zeeman
coupling, respectively, with the purely isotropic spin g-tensor: gx = gy = gz = 2. Taking account of the spin-orbital
1Eu-

3Eu mixing leads to emergence of the spin anisotropy with additive contribution to the effective spin Hamiltonian:

Van = DŜ2
z , D = ∆st −

√

∆2
st + λ2 ≈ − λ2

2∆st

, (58)

and to the effective axial anisotropy of the spin g-tensor: gz = 2, gx = gy = 2 cos θ, where

cos θ =
1√
2

√

1 +
∆st

√

∆2
st + λ2

≈ 1− λ2

8∆2
st

. (59)

Taking account of the vibronic coupling upon the conditions of weak pseudo-Jahn-Teller effect (pσ = λ1/2E
σ
JT > 1)

does not vary a form of the effective spin Hamiltonian since the vibronic distortions are suppressed by the spin-orbital
coupling. With the strong pseudo-Jahn-Teller effect ( pσ = λ1/2E

σ
JT < 1) one should make use of the vibronic states

(46), that results in a very complicated spin-vibronic effective Hamiltonian. A relatively simple situation occurs at
p2σ ≪ 1, and small magnitude of the overlap for the vibrational functions, when, neglecting the spin-orbital 1Eu-

3Eu

mixing, we come to an effective Hamiltonian:

H = −βHzg1 〈χ+|χ−〉 l̃z Î + β
∑

i=x,y,z

HigijŜj , (60)

where the overlap integral 〈χ+|χ−〉 is determined according to Eq. (44) and for the axial g-tensor: gz = 2 − pσg1,
gx = gy = 2. It should be noted the principal difference in the g-factor anisotropy with and without vibronic effects.
The doublet of the states with different (±) projections of the effective orbital moment corresponds to the functions

{Ψ(1)
g , Ψ

(0)
g , Ψ

(−1)
u } and {Ψ(1)

u , Ψ
(0)
u , Ψ

(−1)
g }, respectively, where, along with the above defined functions Eq. (46), we

have introduced

Ψ(0)
g =

1√
2

(∣

∣

∣E(2)
u

〉

χ
(0)
+ + i

∣

∣

∣E(1)
u

〉

χ
(0)
−

)

, (61)

Ψ(0)
u =

1√
2

(

i
∣

∣

∣E(2)
u

〉

χ
(0)
+ +

∣

∣

∣E(1)
u

〉

χ
(0)
−

)

.
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An upper label for the vibrational function underlines the difference in the location of the minima for the MS = 0 and
MS 6= 0 spin 3Eu states on the lower AP sheet. It should be noted also, that, in general, the overlap integral 〈χ+|χ−〉
depends on the z-component of magnetic field due to the orbital Zeeman coupling, which contributes to the energy of
the lower sheet of the adiabatic potential. At βHz ≫ λ1 an expression for the corresponding energy acquires a form:

ε− =
1

2

(

ω2
αQ

2
α + ω2

βQ
2
β

)

−
√

(VαQα)
2 + (VβQβ)

2 + (βHzg1)
2. (62)

VII. CONCLUSIONS

We have presented a detailed analysis of the pseudo-Jahn-Teller effect within a bare electronic (1A1g,
1,3Eu) manifold

for the hole or electron CuO4 centers in doped cuprates. Above we did not consider a number of problems generated
by the occurrence of the PJT centers. Firstly, one should note strong inter-center coupling effects caused by the
common oxygen ion and the related effects of the coupling with either tilting or buckling modes. The PJT centers
are responsible for the numerous effects of the short-range or long-range cooperative PJT ordering observed for the
cuprates: some of them have been considered earlier [27,30]. Note Ref. [27], where some effects of the cooperative
PJT ordering are considered within a model that could be readily modified for our scenario. Authors have performed
a model calculation of the specific heat, the elastic moduli and the thermal expansion coefficient for the cuprates with
cooperative PJT effect accompanied by the strong fluctuations of crystalline fields.
An important problem is associated with an influence of the PJT centers to the local boson kinetics and super-

conductivity. As a whole, this is an item for separate discussion though some effects of the vibronic reduction and
isotope shift were briefly considered earlier [32].
In conclusion, we would like to pick up and shortly list again a number of experimental data which confirm namely

an above developed specific scenario of the PJT centers in cuprates:
1. Appearance of the MIR absorption bands for all considered cuprates.
2. The numerous NQR-NMR reveal of the singlet-triplet near-degeneracy within ground state manifold for the hole

centers.
3. Observation of the anomalously strong anharmonic low temperature thermal motion of the copper atoms within

the copper-oxygen hybrid Qeu mode displayed by the maximum entropy method.
4. Observation of the ferroelectric anomalies.
5. Unusual copper isotope-shift effect in superconducting cuprates.
6. Observation of the specific phonon anomalies.
Among diverse peculiarities of the singlet-triplet PJT centers it should be especially emphasized a possible appear-

ance of the so-called ”tunnel paramagnetic centers” [18] which spin states S = 1,MS = ±1 and S = 1,MS = 0,
respectively, are localized within different wells of the adiabatic potential. In other words, different spin states corre-
spond to different local distortions of the CuO4 cluster. Spin dynamics and relaxation for the tunnel paramagnetic
centers are cruiciably dependent on the magnitude and orientation of external magnetic field. These centers could be
relatively readily transferred to the metastable state. An occurrence of the tunnel paramagnetic centers inside the
small droplets of the PJT center phase was considered [18] as an origin of the magnetization and magnetostriction
anomalies in cuprate CuO. Perhaps, these are responsible for the unusual magnetic resonance signals observed in
cuprate Eu2CuO4 [46].
It should be noted that we did not undertake the task of reviewing all the available experimental data confirming

the PJT nature of the CuO4 clusters in doped cuprates and comparing them with our model approach: it is a separate
problem. At the same time, it should be noted that the PJT center model is entirely based on the vast amount of the
experimental material.
We consider the above results as an essential first step to the elaboration of the comprehensive theory of the PJT

lattice in the doped cuprates.
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TABLE I.
Expressions of the decomposition coefficients for electronic wave function, extremum coordinates of AP surface and

quadratic form of AP surface near the extremal points. The following notations are used: q
(0)
i = Vi/ω

2
i , cσ =

√

aσ

aσ+b
,

dσ =
√

b
aσ+b

, q1 = (qx + qy)/
√
2, q2 = (−qx + qy)/

√
2. For the NJT extremum εσ0 = −∆−Ez

JT ; for the JTσ extrema:

εσ0 = −Eσ
JT ; for the PJTσ extrema: εσ0 = −Eσ

JT − 1
2c

2
σaσ.

Type N z x y Q0
z Q0

α Q0
β Q0

x Q0
y 2ε(q)− 2εσ0 −

∑

i
ω2
i q

2
i

NJT 1 1 0 0 −q
(0)
z 0 0 0 0 −ω2

eηz
(

q2x + q2y
)

JTα 1 0 0 1 0 q
(0)
α 0 0 0 −ω2

eκαq
2
y − ω2

βλαq
2
β

2 0 1 0 0 −q
(0)
α 0 0 0 −ω2

eκαq
2
x − ω2

βλαq
2
β

JTβ 1 0 −1√
2

1√
2

0 0 q
(0)
β 0 0 −ω2

eκβq
2
2 − ω2

αλβq
2
α

2 0 1√
2

1√
2

0 0 −q
(0)
β 0 0 −ω2

eκβq
2
1 − ω2

αλβq
2
α

PJTα 1 cα 0 dα −q
(0)
z c2α q

(0)
α d2α 0 0 −q

(0)
e 2cαdα

− (ωeυαqx + ωβραqβ)
2 −

− (ωzταqz + ωαµαqα − ωeναqy)
2

2 cα dα 0 −q
(0)
z c2α −q

(0)
α d2α 0 −q

(0)
e 2cαdα 0

− (ωeυαqy + ωβραqβ)
2 −

− (ωzταqz − ωαµαqα − ωeναqx)
2

3 cα 0 −dα −q
(0)
z c2α q

(0)
α d2α 0 0 q

(0)
e 2cαdα

− (ωeυαqx − ωβραqβ)
2 −

− (ωzταqz + ωαµαqα + ωeναqy)
2

4 cα −dα 0 −q
(0)
z c2α −q

(0)
α d2α 0 q

(0)
e 2cαdα 0

− (ωeυαqy − ωβραqβ)
2 −

− (ωzταqz − ωαµαqα + ωeναqx)
2

PJTβ 1 cβ
−dβ√

2

dβ√
2

−q
(0)
z c2β 0 q

(0)
α d2β q

(0)
e

√
2cβdβ −q

(0)
e

√
2cβdβ

− (ωeυβq1 − ωαρβqα)
2 −

− (ωzτβqz + ωβµβqβ − ωeνβq2)
2

2 cβ
dβ√
2

dβ√
2

−q
(0)
z c2β 0 −q

(0)
α d2β −q

(0)
e

√
2cβdβ −q

(0)
e

√
2cβdβ

− (ωeυβq2 − ωαρβqα)
2 −

− (ωzτβqz − ωβµβqβ − ωeνβq1)
2

3 cβ
dβ√
2

−dβ√
2

−q
(0)
z c2β 0 q

(0)
α d2β −q

(0)
e

√
2cβdβ q

(0)
e

√
2cβdβ

− (ωeυβq1 + ωαρβqα)
2 −

− (ωzτβqz + ωβµβqβ + ωeνβq2)
2

4 cβ
−dβ√

2

−dβ√
2

−q
(0)
z c2β 0 −q

(0)
α d2β q

(0)
e

√
2cβdβ q

(0)
e

√
2cβdβ

− (ωeυβq2 + ωαρβqα)
2 −

− (ωzτβqz − ωβµβqβ + ωeνβq1)
2
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TABLE II.

The overlap and tunnel Hamiltonian matrix elements. The following notations are used: σ0 = q
(0)
σ d2σ, σ

′
0 = q

(0)
σ′ d2σ,

γ0 = q
(0)
e 2cσdσ,

q1 = γ0 cosψ − σ0 sinψ, q2 = γ0 sinψ + σ0 cosψ,
Ω1 = ω+ cos2 ϕ+ ω− sin2 ϕ, Ω′

1 = ω′
+ cos2 ψ + ω′

− sin2 ψ,

Ω2 = ω+ sin2 ϕ+ ω− cos2 ϕ, Ω′
2 = ω′

+ sin2 ψ + ω′
− cos2 ψ,

Ω3 = (−ω+ + ω−) sinϕ cosϕ, Ω′
3 = (−ω′

+ + ω′
−) sinψ cosψ,

cosϕ = 1√
2

√

1 + A−B√
(A−B)2+4C2

, sinϕ = 1√
2

√

1− A−B√
(A−B)2+4C2

,

cosψ = 1√
2

√

1 + D−E√
(D−E)2+4F 2

, sinψ = 1√
2

√

1− D−E√
(D−E)2+4F 2

.

a) H = Vel + TQ + UQ + Vvib

Vel c2σ ∆

TQ
1
4
(ω+ + ω− + ω′

+ + ω′
−)

UQ
1
4

(

Ω2
ω+ω−

+
Ω′

2
ω′

+
ω′

−

)

+
ω2
σΩ′

1
4ω′

+
ω′

−

+
ω2
σ′

Ω1

4ω+ω−

+
ω2
e

2
γ2
0 +

ω2
σ

2
σ2
0

Vvib −ω2
eγ

2
0 − ω2

σσ
2
0

b) Sq = Sel
q Sn

q and Hq = V q
el + T q

Q + Uq
Q + V q

vib

Sel
q c2σ

Sn
q 2

[

ω+ω−ω′

+ω′

−

(ω+ω−+Ω2Ω
′

1)
(

ω′

+
ω′

−
+Ω1Ω

′

2

)

]1/2

exp
{

−ω+ω−(ω′

+q21+ω′

−
q22)+ω′

+ω′

−
Ω2σ

2
0

ω+ω−+Ω2Ω
′

1

}

V q
el c2σ ∆ Sn

q

T q
Q

Sq

[

1
2
(ω+ + ω− + ω′

+ + ω′
−)−

Ω2
2(A+D)+Ω2

3B+2Ω2Ω3C

2(ω+ω−+Ω2Ω
′

1)
2 (γ0Ω

′
2 + σ0Ω

′
3)

2 −

− 1
4

(

(Ω1+Ω′

1)B+Ω2(A+B)+2Ω3C

ω+ω−+Ω2Ω
′

1
+

(Ω1+Ω′

1)E+Ω′

2(A+B)+2Ω′

3F

ω′

+
ω′

−
+Ω1Ω

′

2

)

− Ω2(γ0Ω
′

2+σ0Ω
′

3)(σ0F−γ0D)

ω+ω−+Ω2Ω
′

1
− D

2
γ2
0 − E

2
σ2
0 + Fσ0γ0

]

Uq
Q Sq

[

1
4

( 2ω2
eΩ2+ω2

β
(Ω1+Ω′

1)

ω+ω−+Ω2Ω
′

1
+

2ω2
eΩ

′

2+ω2
σ(Ω1+Ω′

1)

ω′

+
ω′

−
+Ω1Ω

′

2

)

+
2ω2

eΩ
2
2+ω2

σ′
Ω2

3

2(ω+ω−+Ω2Ω
′

1)
2 (γ0Ω

′
2 + σ0Ω

′
3)

2
]

V q
vib Sn

q

[

−ω2
eΩ2γ0 + ω2

σ′Ω3σ
′
0

] γ0Ω
′

2+σ0Ω
′

3
ω+ω−+Ω2Ω

′

1

c) Sd = Sel
d Sn

d and Hd = V d
el + T d

Q + Ud
Q + V d

vib

Sel
d c2σ − d2σ

Sn
d

[ω+ω−ω′

+ω′

−

Ω1Ω2Ω
′

1
Ω′

2

]1/2
exp
{

−ω′

+ω′

−

Ω′

2
γ2
0

}

V d
el c2σ ∆ Sn

d

T d
Q Sn

d

[

1
2
(ω+ + ω− + ω′

+ + ω′
−)− 1

4

(

A
Ω1

+ B
Ω2

+ D
Ω′

1
+ E

Ω′

2

)

− ω′ 2
+ ω′ 2

−

2Ω′ 2
2

γ2
0

]

Ud
Q Sd

[

1
4

(

ω2
e

Ω1
+

ω2
e

Ω′

1
+

ω2
σ

Ω′

2
+

ω2
σ′

Ω2

)

+
ω2
σ

2
σ2
0

]

V d
vib Sn

dω
2
σσ0

(

σ0 +
Ω′

3
Ω′

2
γ0
)
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TABLE III. The reduction factors: the Γ̃; Γ, Γ′; Γ1, Γ
′
1 label the transformation properties of the electronic operator (with

Σ = α at Σ′ = β, and Σ = β at Σ′ = α), the vibronic wave function and the electronic wave function, respectively. Additional
notations:

〈

χ2
a1g

〉

= 1 + 2Sn
q + Sn

d ,
〈

χ2
σ

〉

= 1− 2Sn
q + Sn

d ,
〈

χ2
eu

〉

= 1− Sn
d .

Γ̃ Γ Γ′ Γ1 Γ′
1 KΓ̃

(

Γ Γ′

Γ1 Γ′
1

)

A1g A1g A1g A1g A1g N−2
A1g

c2σ
〈

χ2
a1g

〉

A1g A1g Eu Eu 2−1/2 N−2
A1g

d2σ
〈

χ2
eu

〉

Eu Eu A1g A1g 21/2 N−2
Eu

c2σ
〈

χ2
eu

〉

Eu Eu Eu Eu 2−1 N−2
Eu

d2σ
{〈

χ2
a1g

〉

+
〈

χ2
eu

〉}

Σ Σ A1g A1g N−2
Σ c2σ

〈

χ2
σ

〉

Σ Σ Eu Eu 2−1/2 N−2
Σ d2σ

〈

χ2
eu

〉

Σ Eu Eu Eu Eu 2−1 N−2
Eu

d2σ
{〈

χ2
a1g

〉

+
〈

χ2
eu

〉}

A1g Σ Eu Eu −2−1/2 N−1
A1g

N−1
Σ d2σ

〈

χ2
eu

〉

Σ′ Eu Eu Eu Eu 2−1 N−2
Eu

d2σ
{〈

χ2
a1g

〉

−
〈

χ2
eu

〉}

A2g Eu Eu Eu Eu 2−1 N−2
Eu

d2σ
{〈

χ2
a1g

〉

−
〈

χ2
eu

〉}

Eu A1g Eu A1g Eu 2−1/2 N−1
A1g

N−1
B1g

cσ dσ
〈

χ2
a1g

〉

A1g Eu Eu A1g 2−1/2 N−1
A1g

N−1
B1g

cσ dσ
〈

χ2
eu

〉

Σ Eu A1g Eu −2−1/2 N−1
Σ N−1

Eu
cσ dσ

〈

χ2
σ

〉

Σ Eu Eu Eu −2−1/2 N−1
Σ N−1

Eu
cσ dσ

〈

χ2
eu

〉
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Figure captions

FIG. 1. Correlation effects in the energy spectrum of the basic CuO6−
4 cluster and the hole CuO5−

4 center with numerical
values (in eV) typical for oxides like CuO. On the right hand side we show a formation of the fundamental absorption spectra
for the parent and hole doped oxides with peculiar MIR band in the latter case.The lower panel is an illustration of the bare (a)
CuO5−

4 center energy spectrum modification with taking into account the strong pseudo-Jahn-Teller-effect (b) and the tunnel
splitting of the ground vibronic states (c). Distortions of the CuO4 cluster assotiated with the different AP minima are shown
schematically in the insert.

FIG. 2. Possible distortions of the CuO4 cluster in the a) JTα minimum; b) JTβ minimum; c) PJTα minimum (the dipole
moment is oriented along the CuO4 cluster diagonal); b) PJTβ minimum (the rotation angle value for the dipole moment with
respect to that in PJTα minima is φ = π/4).

FIG. 3. The allocation of the PJTσ minima in a space of symmetric coordinates Qσ, Q1, Q2 (σ is the ”strong” rhombic

mode). If σ = α, then Q1 = Qx, Q2 = Qy; if σ = β, then Q1 =
Qx+Qy

2
, Q2 =

−Qx+Qy

2
.

FIG. 4. The diagram of the lower AP sheet states in the (∆, Eσ
JT , E

e
JT ) space at certain fixed Ez

JT = Ez,0
JT value. The planes

aσ = 0 and b = 0 divide the (∆, Eσ
JT , E

e
JT ) space into four parts corresponding to NJT-, JTσ-, PJTσ- or NJT+JTσ-type of the

lower AP sheet minima. In the NJT+JTσ region the plane is shown, where the NJT- and JTσ minimum energies are equal.

FIG. 5. a) The diagram of states of the lower AP sheet on the (∆, Eσ
JT ) plane at certain fixed Ez

JT and Ee
JT value. The

boundaries aσ = 0 and b = 0 of the regions with different type of the lower AP sheet minima are shown. The lines Eσ
JT = Eσ,1

JT

and Eσ
JT = Eσ,2

JT correspond to the two different relative intensities of the vibronic coupling via σ mode and eu mode. b) The
diagram of states of the upper AP sheets on the (∆, Eσ

JT ) plane at certain fixed Ez
JT and Ee

JT value. In the region to the left
of the ∆ = −2Ez

JT line there is NJT minimum on the upper AP sheet and only the trivial non-analytical minimum on the
middle AP sheet. In the region to the right of the ∆ = 2Eσ

JT line there is JTσ minima on the middle AP sheet and the trivial
non-analytical minimum on the upper AP sheet. At Ez

JT < 2Ee
JT the regions of parameters exist, where the PJTσ minima on

the lower AP sheet coexist with the NJT minimum on the upper sheet or with the JTσ minima on the middle sheet. Between
the ∆ = −2Ez

JT and ∆ = 2Eσ
JT lines only the trivial non-analytical minima on the upper sheets exist.

FIG. 6. The ∆ dependencies of a) the lower tunnel energy levels and b) the corresponding tunnel splittings at ke = 3,
kσ/ke = 0.5, kσ′/kσ = 0.5, kz = 0 where k2

i = 2Ei
JT /h̄ωi. A significant increasing of the Σ level energy at the ∆ interval border

is connected with non-applicability of the chosen basis for a description of the exited vibronic states in the situation of shallow
minima.

FIG. 7. The possible CuO4 cluster distortions in the equipotential continuum of minima as function of ϕ angle (see text).
The n points correspond to the ion allocations at ϕ = nπ/2. The a) and b) panels differ by the initial mutual orientation of
the b1g and b2g distortions. The top and bottom fragments on each panel correspond to different initial mutual orientation of

the (b1g, b2g) and eu distortions. The possible trajectories of the oxygen ions for the different values of
∣

∣

∣
2 q

(0)
e

q
(0)
σ

(

aσ

b

)(1/2)
∣

∣

∣
are

shown. The radius of the copper ion trajectory is proportional to q
(0)
e . The equivalent CuO4 cluster distortions with opposite

phase of the copper ion (nCu → nCu + 4) are also possible.

FIG. 8. The reduction factor dependencies a) as a function of ∆ at ke = 3, kσ/ke = 0.5, kσ′/kσ = 0.5, kz = 0
(k2

i = 2Ei
JT /h̄ωi); b) as a function of dimensionless coupling constant k at ke = k, kσ/ke = 0.5, kσ′/kσ = 0.5, kz = 0.
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