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Low field negative magnetoresistance in double layer structures
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The weak localization correction to the conductivity in coupled double layer structures is studied
both experimentally and theoretically. Statistics of closed paths has been obtained from the analysis
of magnetic field and temperature dependencies of negative magnetoresistance for magnetic field
perpendicular and parallel to the structure plane. The comparison of experimental data with results
of computer simulation of carrier motion over two 2D layers with scattering shows that inter-layers
transitions play decisive role in the weak localization.

PACS numbers: 73.20Fz, 73.61Ey
I. INTRODUCTION

Transitions between 2D layers is one of fundamental
features of double layer structures. It changes the quan-
tum corrections to the conductivity, especially in a mag-
netic field parallelﬂto the layers.

It is well knownl that the interference of electron waves
scattered along closed trajectories in opposite directions
(time-reversed paths) produces a negative quantum cor-
rection to the conductivity. An external magnetic field
(B) gives the phase difference between pairs of time-
reversed paths ¢ = 27(BS)/®(, where ®( is the quan-
tum of magnetic flux, S is the area enclosed, and thus
destroys the interference and results in negative magne-
toresistance.

In case of a single 2D layer the influence of a magnetic
field is strongly anisotropic because all the paths lie in
one plane. The magnetoresistance is maximal for B || n,
where n is the normal to 2D layer. When a magnetic
field lies in the 2D layer plane, B | n, the scalar prod-
uct (BS) is zero, i.e. the magnetic field does not destroy
the interference, and the negative magrﬁztoresistance is
absent in this magnetic field orientation.

In coupled double layer structures, the tunneling be-
tween layers gives rise to the closed paths where an elec-
tron moves initially over one layer then over another one
and returns to the first layer. For this paths the product
(BS) is non-zero for any magnetic field orientation and
hence the negative magnetoresistance has to appear for
B 1 n as well.

The magnetic field dependence of the negative mag-
netoresistance is determined by the statistics of closed
paths, namely, by the area distribution function, W (S),
and area dependence of the average length of closed
paths, Z(S).H»ﬁn.]ust these statistic dependencies have
been studied in single 2D layer structures by aﬁéﬁysis
of negative magnetoresistance measured at B || n.t

The role of inter-layers transitions in weak localiza-
tion and negative magnetoresistance for B || n for mul-

tilayer structures (superlattices) was discussed in Ref. E
The closely related problem concerning the role of inter-
subbands transitions in quasi-two dimensional structures
with several subbands occupied was theoretically studied
in Ref. .

In this paper we present the results of investiga-
tions of the negative magnetoresistance in double layer
GaAs/InGaAs structure for different magnetic field ori-
entations. We obtain the area distribution functions and
area dependencies of the average lengths of the closed
paths using the approach developed in Refs. ,E. These
functions are compared with those obtained from the
computer simulation of carrier motion when inter-layers
transitions are accounted for. Close agreement shows
that just the inter-layers transitions determine the neg-
ative magnetoresistance in coupled double layer struc-
tures.

II. EXPERIMENTAL RESULTS

The double well heterostructure GaAs/In,Gaj_,As
was grown by Metal-Organic Vapor Phase Epitaxy
(MOVPE) on semi-insulator GaAs substrate. The het-
erostructure consists of a 0.5 pm-thick undoped GaAs
epilayer, a Si d-layer, a 75 A spacer of undoped GaAs,
a 100 A Ing ¢sGag.g2As well, a 100 A barrier of undoped
GaAs, a 100 A IngsGaggeAs well, a 75 A spacer of
undoped GaAs, a Si d-layer and 1000 A cap layer of un-
doped GaAs. The samples were mesa etched (cut??)
into standard Hall bridges. The measurements were per-
formed in the temperature range 1.5 — 4.2 K at low mag-
netic field up to 0.4 T with discrete 10~* T for two ori-
entations: the magnetic field was perpendicular (B || z)
and parallel (B || x) to the structure plane (see insert
in Fig. EI) Additional high field measurements were also
made to characterize the structure. It has been found
that in the structure investigated the conductivity is de-
termined by the electrons in the wells. Their densities
have been determined from the Fourier analysis of the
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Shubnikov-de Haas oscillations and consist of 4.5 x 10!
cm™? and 5.5 x 10! ecm™2 in different wells. The Hall
mobility was about p ~ 4200 cm?/ (V x sec).
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FIG. 1. Magnetic field dependencies of Ao /G for different
magnetic field orientations for 7' = 4.2 (a), 1.5 K (b). Sym-
bols are the experimental data, red curves are the simulation
results. Blue curves are the results of calculations carried out
according to Ref. @ Insert in (a) shows a system of coordi-
nates.

The magnetic field dependencies of in-plane magneto-
conductance

Ao(B) = a(B) = a(0) = 1/p(B) —1/p(0) (1)

at magnetic field perpendicular (Ac(B,)) and parallel
(Ac(B,)) to the structure plane are presented in Fig. [I.
One can see that the negative magnetoresistance is ob-
served for both magnetic field orientations and, in con-
trast to the case of single layer structures, the effects
are comparable in magnitude. Analysis of behaviour
of the conductivity in a wide range of temperatures
(1.5 < T < 20 K) and magnetic fields (B < 6 T) shows
that at B < 0.4 — 0.5 T the main contribution to the
negative magnetoresistance comes from the interference
correction. In this case the magnetic field dependence
of the negative magnetoresisﬂaglce is determined by the
statistics of the closed paths.®

Let us apply the method proposed in Refs. E,E to anal-
ysis of negative magnetoresistance in the double layer
structure. Using formalism presented in Section IT of Ref.
E one can write the expression for conductivity of dou-
ble layer structure with identical layers for two magnetic
field orientations as follows

O'(BZ) = 0p + 50’(31)
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Here, Gy = €%/(2n%h), 09 is the classical Drude conduc-
tivity, | = vpT, l, = VFT,, vF is the Fermi velocity, 7
and 7, are the momentum relaxation and phase breaking
time, respectively. The value of L is the function not only
of S but [, as well. It was defined in Ref. B by Eq.(6). It
should be mentioned that Eq. @) is valid at low enough
probability of inter-layers transitions.

Thus, for the magnetic field perpendicular to the struc-
ture plane (B = (0,0, B,)) the magnetoresistance is
determined by z-component of S only and for parallel
magnetic field (B = (By,0,0)) it is determined by a-
component of S.

One can see from Eq. ({) that the Fourier transform
of 00(B)/Gy
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= A7I2W(S;) exp (—L(Si)> : (3)

carriers an information on W (S;) and L(S;). Because
the valug of I, tends to infinity when temperature tends
to zeroH the extrapolation of ®(S;,l,)-vs-T curve to
T = 0 gives the value of 47I>W (S;). The ratio L(S;)/l,
for given S; can be then obtained as In(47l?W(S;)) —
In(®(S;,1,)).
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FIG. 2. Area (a) and temperature (b) dependencies of

the Fourier transforms of do(Bg). Curves in (b) show the
extrapolation of ®(S,T) to T = 0.

The value Ao (B) = o(B) —c(0), not do(B), is experi-
mentally measured. It is clear from Eqs. (f]) and (|) that
do(B) = 0(0)—0¢—Ac(B). To obtain do(B), we assume
that the Drude conductivity og is equal to the conductiv-
ity at T=20 K, when the quantum corrections are small.
Notice that the final results are not sensitive to the value
of oy practically. Obtaining of the distribution function
W(S;) from the experimental do(B,) dependencies for



the structure investigated is illustrated by Fig. E In left
panel the Fourier transforms of do(B,) measured at dif-
ferent temperatures are presented. Right panel shows
how the ®-vs-T' data have been extrapolated to T' = 0.
The area distribution function W (S, ) has been obtained
from the analysis of do(B,) curves in a similar way.

The results of data processing described above are pre-
sented in Fig. Pa. As is seen the 472W(S.) dependence
is close to (25.)7! for S ~ (0.3 — 5) x 10719 cm?. The
analogous behaviour of the area distribution function was
obtained for single 2D layer in Ref. E The behaviour of
W (S;) significantly differs from that of W(S,). In par-
ticular, the W (S,) curve shows a much steeper decline
for S > 0.8 x 1071% ¢cm? . Other feature of the statis-
tics of the closed paths in double layer structure is the
fact that for given S the values of L(S,) are significantly
larger than L(S.) (Fig. fb).
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FIG. 3. The area distribution functions of closed paths (a)
and the area dependence of the L(S,)/L(S.) ratio at T = 1.5
K (b). The symbols are the experimental data, curves are
the results of simulation with ¢ = 0.1, red line in (a) is
(25)*-dependence.

Qualitatively these peculiarities of the statistics of
closed paths in double layer structures can be under-
stood if one considers how trajectories with large enough
length, L > [/t, look. They are isotropically smeared
over xy-plane for the distance ~ /LI, their extended
area in this plane is s, ~ LI. In yz-plane they have size
~ /Ll in y-direction and Zy (where Z; is inter-layer dis-
tance) in z-direction. So, the extended area in yz-plane is
sy ~ ZoV/Ll. Thus, closed trajectories have significantly
larger s, than s,, and the s, /s, ratio increases with in-
creasing s. It is clear that the behaviour of enclosed areas
S, Sy is analogous. Therefore, for S, = S, the inequal-
ity W(S,) > W(S;) is valid. The average length of the
trajectories L(S,) therewith is greater than L(S,).

As was shown in Ref. H the distribution function of
closed paths, the area dependence of average length of

closed paths and weak localization magnetoresistance can
be obtained by computer simulation of a carrier motion
over 2D plane.

IIT. COMPUTER SIMULATION

The model double layer system is conceived as two
identical plains with randomly distributed scattering cen-
ters with a given total cross-section. Every plane is repre-
sented as a lattice M x M with lattice parameter a. The
scatterers are placed in a part of the lattice sites with
the use of a random number generator. We assume that
a particle moves with a constant velocity along straight
lines which happen to be terminated by collisions with
the scatterers. After every collision the particle has two
possibilities: it passes from one plane to another with a
probability ¢ and moves over the second plane or it re-
mains in the plane with probability (1 —t), changing the
motion direction only. If the trajectory of the particle
passes near the start point at the distance less than d/2
(where d is a prescribed value, which is small enough), it
is perceived as being closed. The projections of enclosed
algebraic area is calculated according to

N-1 y +y
1t
S. = %(%‘4—1 — ;) +
j=1
+
+%($N — 1), (4)
N-1
Sz = %(%’4—1 —2j)+
j=1
N +
+ 2 o — =), (5)

where N is number of collisions for given trajectory, x;,
y;, %; stand for coordinates of j-th collision, z; takes the
value 0 or Zy. Otherwise the simulation details are anal-
ogous to them described in Ref. E for the case of single
2D layer system.

All the results presented here have been obtained us-
ing the parameters: lattice dimension is 6800 x 6800; the
number of starts, I, is 105; the total number of scatter-
ers is about 1.6 x 10°; the scattering cross section is 7;
d =1; Zy = 18. The value of mean free path computed
for such a system is about 43 x a. If we suppose the value
of a equal to 11 A, this model double layer system corre-
sponds to the heterostructure investigated. Namely, the
mean free path is equal to the value of I ~ 480 A, and the
value of Zj is close to the distance between the centers
of the quantum wells, 200 A.

The area distribution functions obtained as the result
of simulation with different inter-layers transition proba-
bilities are presented in Fig. E Let us discuss at first the
behaviour of W (S.) (Fig. fla). For t = 0, the 4ml?W (S.)
curve corresponds to the area distribution function for



single layer. For large S this curve goes close to the S~!-
dependence, which cgrresponds to the ideal 2D system in
the diffusion regime.H The deviation, which is evident for
S. < 103 a2, is just due to the transition to the ballistic
regime. It is obviously that for sufficiently large values
of ¢, the probability of return to the start point has to be
twice smaller than that for ¢ = 0. As is seen from Fig. Ea
even the value ¢t = 0.1 is large enough in this sense: the
corresponding curve is close to the (25)~!-dependence
practically in whole area range. This is because the long
trajectories with large number of passes between lay-
ers give significant contribution to W(S,) starting from
small areas, S, > 0.112. For the intermediate value of ¢
(t = 0.002, 0.01) the area distribution function is close to
the S~1 function for small areas and tends to the (25)~1
dependence for large ones.
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FIG. 4. Area distribution functions W(S.) (a) and W (Sz)
(b) as they have been obtained from the simulation procedure
with different ¢ values.

The behaviour of W (S,) contrasts with that of W(S,)
(Fig. fib). At small S,, W(S,) depends only weekly on
S., whereas at large S, it decreases sharply when S, in-
creases. Sensitivity of W(S,) to inter-layers transition
probability depends on S, value. For small S, values,
when the area distribution function is mainly determined
by short closed paths with small number of inter-layers
transitions, the value of W(S,) considerably increases
with increasing ¢. For large S, i.e. for paths with large
number of inter-layer transitions, W (S, ) weakly depends
on the transition probability.

Let us demonstrate how the magnetoresistance of our
model 2D system changes with changing of the inter-
layers transition probability. The theoretical do(B) de-
pendencies have been calculated by summing over the
contributions of every closed path to E;he conductivity in
accordance with following expression

Go  Ld4 Os< P )exp< l«p)7 ©

where [; is the length of i-th closed path. The results
of calculation are presented in Fig. |, where Ac(B;) =
§o(B;) — d0(0) is plotted against B/ By, B, = hc/(2el?).
As is seen the changes in magnetic field dependencies of
negative magnetoresistance with change of inter-layers
transition probability reflect the variation of area distri-
bution functions. Indeed, Ac(B,) depends on ¢ slightly:
maximal change is less than two times for decreasing ¢t up
to zero, whereas Ao (B,;) changes drastically. It decreases
about hundred times, when the value of t decreases from
0.1 to 0.002.

IV. DISCUSSION

Let us compare the calculated area distributions with
experimental data. One can see from Figs. Ja and i, that
the behaviour of calculated and experimental W (S,) and
W (S,) dependencies is close qualitatively. As mentioned
above, W (S,) depends on inter-layers transition proba-
bility significantly stronger than W(S,). Therefore we
have estimated the transition probability comparing the
calculated and experimental W(S,) curves. The most
accordance has been obtained with ¢ ~ 0.1 (see Fig. Ea)
As seen from the figure, with this value of ¢ the calculated
W (S,) dependence describes the experimental data well.
Some quantitative inconsistency, especially for W(S,), is
evident in Fig. Ea. We believe, this is result of crudity of
model used. In particular, we supposed the identity of
both 2D layers.
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FIG. 5. Calculated magnetic field dependencies of Ao for
different inter-layers transition probability, I/lp = 0.01.

Let us turn now to magnetic field dependencies of nega-
tive magnetoresistance. To calculate Ao (B), in addition
to the inter-layers transition probability it is necessary
to know the phase breaking length. Using the value of
t = 0.1 estimated above, we have found that the best
agreement between theoretical and experimental Ao (B;)
dependencies is obtained with I/, ~ 3.4 and 1.4 ym for



T=1.5 and 4.2 K, respectively. The Ac(B,) and Ac(B,)
dependencies calculated with these [, values practically
coincide with those measured experimentally (see Fig.
fl). It should be noted that these values of l, some differ
from those obtained by fitting of the Ac(B,) curves to
the Hikami expression:d the fit gives I, ~ 4.8 and 1.7 um
for T=1.5 and 4.2 K, respectively. The reason of this dif-
ference is that the Hikami formula was obtained for single
2D layer, and it is not suitable for analysis of negative
magnetoresistance in coupled double layers structures.

Finally, knowing the values of ¢ and [, we are able to
compare the calculated and experimental area dependen-
cies of L(S;) to L(S.) ratio (Fig. Bp). It is seen that the
experimental ratio is significantly larger than unity as
well as calculated one. However, the experimental points
lie somewhat below than calculated curve. We suppose
that the main reason of such disagreement is dissimilarity
of the layers in structure investigated.

After this paper has been prepared for publication, the
paper by Raichev and Vasilopoulos on the theory of weak
localization in double quantum ﬂells is appeared in Con-
densed Matter e-Print archive.ld Let us apply this the-
ory to our case. Using the formulae derived in Ref. ,
we have calculated Ao (B;) dependencies for our struc-
ture. These dependencies are represented in Fig. || by
dashed curves. As is clearly seen, theory developed in
Ref. describes our experimental results only in low
magnetic fields. The reason is that the calculations in
Ref. @ were carried out in the framework of diffusion
approximation. It means that two conditions are met.
The first condition is 7 < 7,. For the structure inves-
tigated 7/7, = 0.014 — 0.035 for different temperatures,
and this condition may be considered as fulfilled. Accord-
ing to the second condition, the magnetic field has to be
low enough: B <« B; when B || z, or B < Byl/Zy when
B || x. In our case By ~ 0.14 T, [/Zy ~ 2.5 and hence the
diffusion approximation is applicable, when B <« 0.14 or
0.35 T depending on the magnetic field orientation. It is
in this range of magnetic field that the results of Ref. E
are close to our experimental data.

Our calculations are valid beyond the diffusion approx-
imation and therefore they better describe the experi-
mental results in whole magnetic field range, where weak
localization correction to the conductivity is dominant.

V. CONCLUSION

We have investigated the negative magnetoresistance
in double layer heterostructures for different magnetic

field orientations. The information about statistics of
closed paths has been extracted from the analysis of tem-
perature and magnetic field dependencies of conductiv-
ity. Significant difference in area distribution functions,
W(Sz), W(S.), and in average lengths of closed paths,
L(S.), L(S,), has been found. In order to interpret the
experimental results, we have investigated the statistics
of closed paths and negative magnetoresistance using the
computer simulation of the carrier motion with scatter-
ing over two 2D layers. Analysis of experimental and
theoretical results unambiguously shows that in parallel
magnetic field the negative magnetoresistance in double
layer structures is determined by inter-layers transitions.
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