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A short and robust approach for the synthesis of 2-(hetero)aryl substituted thieno[2,3-b]indoles from easily available 1-alkylisatins

and acetylated (hetero)arenes has been advanced. The two-step procedure includes the “aldol-crotonic” type of condensation of the

starting materials, followed by treatment of the intermediate 3-(2-oxo0-2-(hetero)arylethylidene)indolin-2-ones with Lawesson’s

reagent. The latter process involves two sequential reactions, namely reduction of the C=C ethylidene double bond of the intermedi-

ate indolin-2-ones followed by the Paal-Knorr cyclization, thus affording tricyclic thieno[2,3-b]indoles.

Introduction

8H-Thieno[2,3-b]indole is a fused heterocyclic system, which
has attracted a considerable attention of researchers, mainly due
to the fact that thieno[2,3-b]indole derivatives exhibit a wide
range of biological properties, and can be regarded as promising
compounds for agricultural or pharmacological applications.
For example, the alkaloid thienodolin [1], isolated from the
fermentation mixture of Streptomyces albogriseolus and charac-
terized by Kanbe et al. [2,3], has shown to exhibit a plant-
growth-regulation activity (Figure 1). Furthermore, it has been
reported that some thienoindoles are therapeutically agents for

treating diseases of the central nervous system [4], potential

inhibitors of acetylcholine esterase and butyrylcholine esterase
[5], compounds of this series exhibit as well anti-tuberculosis
[6] and anti-inflammatory activities [7]. Another promising area
for the use of thieno[2,3-b]indoles, as electron-rich heteroaro-
matics, is the design of photo- and electroactive compounds
which can be applied in organic optoelectronic materials.
Indeed, we have recently reported the synthesis of novel
push—pull dyes IK-1,2 based on the thieno[2,3-b]indole ring
system, as a donating part of dye-sensitized solar cells [8]
(Figure 1). It should be noted that thieno[2,3-b]pyrrole and
thieno[3,2-b]pyrrole ring systems have been incorporated in the
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structures of various fused polycyclic compounds (hetero-
acenes), which have been used as efficient hole-transport ma-
terials for organic light emitting diodes (OLEDs) or field effect
transistors (OFETs) [9-15].

IK-1: R = Et
IK-2: R = n-Bu

Cl

H Thienodolin R

Figure 1: Natural and synthetic derivatives of thieno[2,3-b]indole.

Taking into account that the overwhelming majority of com-
pounds for organic electronics are constructed from m-conju-
gated linear or angular fused aromatic and heteroaromatic units
[16-19], the development of convenient synthetic ways to struc-
tures bearing several linked (het)aromatic units appears to be a
very important issue. It means that synthetic methods should be
based on a minimum number of steps (one-pot procedure as the
perfect case), while the starting materials are supposed to be
easily available.

A number of synthetic routes to thieno[2,3-b]indoles have been
described in the literature, including oxidative cyclization of
indolin-2-thiones 1 [20], radical or palladium catalyzed cycliza-
tion of 3-(2-bromoindol-3-yl)acrylonitriles 2 [21,22], intramole-
cular CH/NH-coupling in benzo[b]thiophenes 3 [23], AICl;
catalyzed recyclization of 2-(2-isothiocyanatophenyl)furanes 4
[24], reductive cyclization of 3-(2-nirtophenyl)thiophenes 5 via
nitrene intermediates [25,26], and condensation of 3-unsubsti-

base

P(OEt);

—_—

AICl3 R
R

Scheme 1: Synthetic routes to thieno[2,3-b]indoles.
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tuted indolin-2-thione 6 with aliphatic a-bromoaldehydes,
a-bromoketones [27] or 3-halochromones (Hlg = Cl, Br) [28]
under basic conditions (Scheme 1). However, all synthetic
methods mentioned above are based on using functionalized
indoles, thiophenes, furans or chromone precursors, which
require several steps to be prepared.

Results and Discussion

In this paper we wish to report a convenient, short and robust
approach to 8-alkyl-2-(het)arylthieno[2,3-b]indoles from
1-alkylisatins and the corresponding acetylated (hetero)arenes
which are easily accessible reagents, including commercially
available ones. It is well known that the reaction of isatins 7
with methyl ketones 8 leads to the formation of aldol-type
adducts 9 under catalysis with mild bases, such as secondary or
tertiary amines. These adducts can be dehydrated easily by
acidic agents to form crotonic condensation products, namely
3-(2-0x0-2-(hetero)arylethylidene)indolin-2-ones 10, which can
undergo reduction of the C=C double bond in the presence of
Na;S;04 [29], Hp/Pd(C) [30], or Me3P-H,O [31] (Scheme 2)
into the corresponding indolin-2-ones 11. Compounds 11
bearing the fragment of 4-oxobutyramides (1,4-dicarbonyl
derivatives) can be cyclized into thieno[2,3-b]indoles by using
the Paal-Knorr reaction with such thionation agents, as P4S;( or
Lawesson’s reagent. This four-step route to thieno[2,3-b]indoles
via the formation of indoline-2-ones 11 from isatins and methyl
ketones has previously been realized [32,33]. In particular,
preparation of 2-methyl-8 H-thieno[2,3-b]indole from unsubsti-
tuted isatin and acetone in 15% yield has been reported [32]
(Scheme 2). Although it seems to be a very harmonious
strategy, it has hardly a significant preparative interest, since the
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Scheme 2: Synthesis and thionation of indodin-2-ones 11.

target compounds are formed from isatins 7 and ketones 8 in

four steps in low yields.

The formation of model thieno[2,3-b]indole 12a from 1-ethyl-
isatin (7a) and acetophenone (8a) has been studied in details, as
the first step of our research (Scheme 3). The conventional path
[32] (Path C) leading to the aldol adduct 9a (which was further

used without purification in all our experiments), its dehydra-
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tion into 10a, reduction of the latter to indolin-2-ones 11a, and
finally cyclization of 11a by action of Lawesson’s reagent (LR),
resulting in the formation of the desired product 12a in an
overall yield of 25%. We have found that treatment of com-
pound 10a with Lawesson’s reagent in toluene solution under
reflux for 1 h leads to 12a as well; however the best overall
yield of 57% has only been reached (Path B). The evidence for
the structure of 12a has been obtained unequivocally by X-ray

Ph
o PhCOMe HO o
8a A Path A
0O ——>» | e} -
N Et,NH/ Z >N 10%
7a Et EtOH 9a Et based on 7a
9] HCI/AcOH
on M_PPh; /PhMe
Y 13 Ph
[10a ] ° ) Path B LR/PhMe WW
| A o 57% - NS
LR/PhMe N based on 7a I
Path D 54% 10a | 1Ezta
based on 7a a Et
Y N828204/aq EtOH
12a Ph
o Path C
O 25%
N based on 7a
11a B

Scheme 3: Synthetic paths to thieno[2,3-b]indole 12a. LR = Lawesson's reagent
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crystallography analysis, thus supporting the data of 'H and
13C NMR spectroscopy (Figure 2).

Figure 2: Mercury [34] representation of the X-ray crystal structure of
12a. Thermal ellipsoids of 50% probability are presented.

The Lawesson’s reagent appears to act firstly as a source of
hydrogen sulfide to reduce the C=C double bond in compound
10a, and secondly, as the thiation agent to form thieno[2,3-
blindole 12a by means of the Paal-Knorr reaction. Compound
9a has also been treated with the Lawesson's reagent in toluene
to give the title product 12a via intermediacy of 10a in a low
10% yield, based on the starting isatin 7a (Path A). Also the
one-pot synthesis (Path D) of compound 12a has been realized
through treatment of isatin 7a with (phenacylidene)tri-
phenylphosphorane 13 and subsequent cyclization of the
intermediate 10a according the Path B. The yield of the target
product 12a obtained by the one-port procedure proved to
be close to that of 12a deriving from the Path B. Path D requires
the more expensive phosphorane derivative 13 which is
formed by pre-functionalization of acetophenone (8a), and this
approach can be regarded as an alternative synthetic route just

in some specific cases. Thus, the two-step approach to convert
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isatins 7 into thieno[2,3-b]indoles 12 via intermediacy of 10
(Path B) has been selected as the most effective and convenient

one.

Thereafter, a series of thieno[2,3-b]indoles 12a—m bearing both
electron-rich and electron-deficient (hetero)aromatic fragments
at C-2 have been prepared in good to moderate yields via the
two-step synthetic procedure (Path B, Scheme 3) from isatin 7a
and the corresponding acetylated (hetero)arenes 8a—m. Dehy-
dration of the initially obtained aldol-type adducts into 3-(2-
oxo0-2-(hetero)arylethylidene)indolin-2-ones 10 has been carried
out in acetic acid solution with addition of hydrochloric acid
(method A), or in CH,Cl, solution with an excess of SOCl,
(method B), when compounds 10 failed to be obtained by
method A (Table 1, Scheme 4). It should be noted that
thieno[2,3-b]indole derivatives 12e,f bearing 4-CN- or 2-NO,-
phenyl substituents at C-2 have been prepared in high yields
from the appropriate indolin-2-ones 10e,f by treatment with
Lawesson’s reagent under the current reaction conditions
without displacement of CN- or NO,-groups (Table 1, entries 5
and 6).

Additionally, compounds 12n,0 bearing one or two bromine
atoms at C-5 or C-5,7 of the thieno[2,3-b]indole scaffold have
been prepared successfully from the corresponding isatins 7b,c
and acetophenone (8a) according to the synthetic procedure
described above. Isatin 7¢ containing an n-hexyl substituent at
the nitrogen atom has been applied to ensure a good solubility
of the target product 120, as well as of the intermediate 100. It
should be noted that bromination of 2-phenyl-substituted
thieno[2,3-b]indole 12a led to a rather complicated mixture of
compounds, and all attempts to reach bromination of com-
pound 12a with an excess of Br-agent (e.g., Bry/1,4-dioxane,
NBS/CHCIl3) proved to be unsuccessful (Scheme 5).

Conclusion
In summary, we have developed a convenient and robust syn-
thetic approach to thieno[2,3-b]indoles, bearing a wide range of

aromatic and heteroaromatic substituents at C-2 with various

O
1. Et,NH/EtOH, 48 h, rt Ar(Het)
O 2. method A: HCI/AcOH, 0.5 h, A o
N or Ar(Het)
7a Et method B: SOCI,/CH,Cl, 12 h, rt LR/PhMe N8
Me + > —_—
N 1h,A N
O~ “Ar(Het) Et Et

8a-m 10a—m 12a—m

Scheme 4: Two-step synthesis of 2-(hetero)aryl substituted thieno[2,3-b]indoles 12.
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Table 1: Yields of thieno[2,3-b]indoles (T[2,3-b]l) 12 and their precursors 10.
Entry Keton 8 (Het)Ar Method for 10 Indolin-2-one 10  Yield of 10 (%) T[2,3-b]l 12  Yield of 12 (%)
1 8a Ph A 10a 63 12a 90

2 8b A 10b 65 12b 90

v

3 8c Br@ A 10¢ 69 12¢ 94
4 8d Me@— A 10d 57 12d 79
5 8e NC@ B 10e 75 12¢ 92
6 8f Q- B 10f 81 12f 82
NO,
MeO
7 8g A 109 74 129 56
MeO
MeO
8 8h A 10h 91 12h 70
MeO
OMe
9 8i CeFs A 10i 33 12i 77
Br.
11 8 I\ A 10j 76 12j 75
S
10 8k @ A 10k 76 12k 74
s
12 8l /N B 101 66 121 61
=N
7 N\
13 8m N B 10m 67 12m 60

0] Ph
R R O [Br] O
LR/PhMe r
O , PhCOMe —» [10n,0] ———> S% =
N 8a N O \s
R2 R R2 R N
Et

12n,0 12a
Compound | 10n‘ 12n ‘ 100 | 120
o = s e 70 7b,12n: R = Et, R = Br, R2 = H
ield, % | ‘ ‘ | 7¢, 120: R = n-hexyl, R'=R2=Br

Scheme 5: Synthesis of mono- and dibromo-substituted thieno[2,3-blindoles 12n,0.

electronic characteristics. Target thieno[2,3-b]indoles have been  a tandem reduction of the C=C double bond and the Paal-Knorr
synthesized from 3-(2-oxo-2-(hetero)arylethylidene)indolin-2-  cyclization, thus affording tricyclic thieno[2,3-b]indoles. In its
one by treatment of the latter with Lawesson’s reagent through  turn, the required indolin-2-ones have been prepared by a
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simple “aldol-crotonic” type of condensation of N-alkylated
isatins with acetophenones or their heterocyclic analogues. This
two-step approach provides an easy access to compounds of the
family of electron-rich thieno[2,3-b]indoles, which are regarded
as promising building-blocks for the development of new
photo- and electrosensitive molecules, e.g., novel push—pull
dyes for dye-sensitized solar cells.

Experimental

General information

'H and 13C NMR spectra were obtained on Bruker DRX-400
and AVANCE-500 spectrometers with TMS as the internal
standard. Elemental analysis was carried on an Eurovector EA
3000 automated analyzer. Mass spectrometry was performed
using a Bruker maXis Impact HD spectrometer. Melting points
were determined on Boetius combined heating stages and were
not corrected. All solvents used were dried and distilled per
standard procedures. IR spectra of samples (solid powders)
were recorded on a Spectrum One Fourier transform IR spec-
trometer (Perkin Elmer) equipped with a diffuse reflectance
attachment (DRA). X-ray diffraction analysis was performed on
an automated X-ray diffractometer “Xcalibur E” on standard
procedure.

General procedure for the synthesis of 3-(2-
oxo-2-(hetero)arylethylidene)indolin-2-one
10a-100

The solution of 1-alkylisatin 7 (3 mmol), corresponding methyl
ketone 8 (3 mmol) and N,N-diethylamine (0.062 mL, 0.6 mmol)
in EtOH (15 mL) was stirred at room temperature for 48 h. The
resulting mixture was concentrated under reduced pressure to
obtain crude adduct 9 that was dehydrated without any purifica-
tion according to method A or method B.

Method A (For the preparation of compounds 10a-d,
10g-Kk): A drop of hydrochloric acid was added to the suspen-
sion of crude adduct 9 in acetic acid (3 mL). The mixture was
stirred at 100 °C for 30 min. After cooling the precipitate was
filtered, washed with methanol and dried to give indolin-2-one
10 as an orange to dark-red solid.

1-Ethyl-3-(2-0xo0-2-phenylethylidene)indolin-2-one (10a):
Orange powder; Yield 525 mg (63%); mp 122-123 °C;
'H NMR (500 MHz, DMSO-dg) & 8.08 (dd, J = 8.2, 0.9 Hz,
2H), 8.00 (d, J=7.6 Hz, 1H), 7.79 (s, 1H), 7.73 (t, J = 7.4 Hz,
1H), 7.61 (t, J = 7.8 Hz, 2H), 7.47-7.40 (m, 1H), 7.13 (d,
J=179 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 3.79 (q, J = 7.2 Hz,
2H), 1.20 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, DMSO-d)
8 191.3,166.3, 144.8, 136.8, 135.2, 134.1, 132.8, 129.1, 128.6,
126.8, 126.4, 122.1, 119.4, 109.2, 34.3, 12.5; IR(DRA): 493,
546, 577, 600, 630, 674, 691, 750, 779, 802, 877, 894, 949,
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1009, 1067, 1089, 1108, 1159, 1181, 1228, 1293, 1347, 1446,
1469, 1482, 1578, 1600, 1620, 1658, 1701, 1823, 1921, 2873,
2933, 2975, 3056, 3114 cm™!; anal. calcd for C1gH;sNO,: C,
77.96; H, 5.45; N, 5.05; found: C, 77.66; H, 5.34; N, 5.08.

Method B (For the preparation of compounds 10e,f,1,—0):
SOCl, (0.28 ml, 3.9 mmol) was added to the solution of crude
adduct 9 in dry CH,Cl, (10 ml). The mixture was stirred at
room temperature for 2 h. The resulting mixture was concen-
trated under reduced pressure and the residue was recrystal-
lized in EtOH affording indolin-2-one 10 as orange to dark-red
needles.

1-Ethyl-3-(2-(2-nitrophenyl)-2-oxoethylidene)indolin-2-one
(10f): Red crystals; Yield 780 mg (81%); mp 120-121 °C;
'H NMR (400 MHz, DMSO-dg) & 8.41 (d, J = 7.6 Hz, 1H),
8.21 (dd, J = 8.1, 0.7 Hz, 1H), 7.97-7.82 (m, 3H), 7.52 (td,
J=1.8,1.0 Hz, 1H), 7.33 (s, 1H), 7.16 (d, J=7.9 Hz, 1H), 7.11
(td, J=17.7, 0.8 Hz, 1H), 3.77 (q, J = 7.2 Hz, 2H), 1.18 (4,
J =17.2 Hz, 3H); 13C NMR (126 MHz, DMSO-dg)  191.3,
166.4, 146.2, 145.5, 136.4, 135.8, 134.7, 133.9, 132.2, 128.8,
127.5,125.8, 124.6, 122.4, 119.3, 109.3, 34.3, 12.5; IR(DRA):
473, 490, 548, 567, 584, 642, 675, 690, 746, 778, 846, 897, 932,
1002, 1058, 1080, 1128, 1164, 1187, 1224, 1285, 1324, 1348,
1391, 1414, 1464, 1485, 1502, 1584, 1608, 1629, 1653, 1709,
1780, 2648, 2837, 2939, 3021, 3402 cm™!; anal. caled for
CigH14N,O4: C, 67.07; H, 4.38; N, 8.69; found: C, 67.03; H,
4.12; N, 8.62.

Procedure for the one-pot synthesis of
thieno[2,3-blindole 12a

The solution of N-ethylisatin 7a (175 mg, 1 mmol) and
(phenacylidene)triphenylphosphorane 13 (380 mg, 1 mmol) in
dry toluene (5 mL) was stirred at room temperature for 48 h.
Afterwards Lawesson’s reagent (405 mg, 1 mmol) was added
and the mixture was refluxed for 1 h. The resulting solution was
concentrated under reduced pressure and the residue was
dissolved in CH,Cl, and filtered through a silicagel pad. After
evaporation of CH;Cl, the crude product was purified by
recrystallization from EtOH giving thieno[2,3-b]indoles 12a as
white needles in 54% yield (150 mg).

General procedure for the synthesis of
thieno[2,3-blindoles 12a-120

The mixture of indolin-2-one 10 (2 mmol) and the Lawesson
reagent (0.81 g, 2 mmol) in dry toluene (10 mL) was refluxed
for 1 h. Upon refluxing the color of the solution turns from
dark-red to yellowish. The resulting solution was concentrated
under reduced pressure and the residue was dissolved in
CH,Cl, and filtered through a silicagel pad. After evaporation
of CH,Cl, the crude product was purified by recrystallization in
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EtOH affording thieno[2,3-b]indoles 12 as white to yellow
needles.

8-Ethyl-2-phenyl-8 H-thieno[2,3-b]indole (12a): Pale yellow
needles; Yield 500 mg (90%); mp 82-83 °C; 'H NMR
(500 MHz, CDCl3) ¢ 7.81 (d, J = 7.8 Hz, 1H), 7.67-7.57 (m,
3H), 7.42-7.33 (m, 3H), 7.30-7.26 (m, 1H), 7.25-7.21 (m, 1H),
7.21-7.16 (m, 1H), 4.28 (q, J= 7.3 Hz, 2H), 1.52 (t, /J=7.3 Hz,
3H); "H NMR (500 MHz, DMSO-dg) § 7.92 (s, 1H), 7.82 (d,
J=17.7Hz, 1H), 7.66 (d, J= 7.3 Hz, 2H), 7.58 (d, J = 8.2 Hz,
1H), 7.44-7.36 (m, 2H), 7.28-7.21 (m, 2H), 7.19-7.11 (m, 1H),
434 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H); 13C NMR
(126 MHz, DMSO-dg) & 141.6, 140.8, 135.0, 134.8, 129.1,
126.7, 124.5, 123.4, 122.0, 121.5, 119.4, 119.1, 114.8, 109.9,
40.3, 13.6; IR(DRA): 474, 550, 567, 688, 746, 779, 835, 850,
905, 935, 999, 1015, 1049, 1078, 1100, 1131, 1162, 1191, 1207,
1252, 1330, 1350, 1377, 1393, 1409, 1439, 1477, 1496, 1524,
1595, 1671, 1734, 1776, 1867, 1894, 1942, 2888, 2928, 2972,
3029, 3053, 3748 cm!; MS (+APCI): Calcd. for CigHsNS m/z
278.0998 [M + H], found m/z 278.1000 [M + H]; Crystal data
for 12a: Colorless crystals 0.24 x 0.19 x 0.13 mm,
0 < 25.6080°, 11563 reflections were collected, 7249 inde-
pendent reflections (R;y 0.0245), completeness 100%. Crystal is
monoclinic, space group Cc, a = 19.0695(13) A,
b = 30.6399(16) A, ¢ = 7.8360(4) A, a = 90.00°,
B =106.777(6)°, y = 90.00°, p = 0.210 mm L. The SHELXTL
program [35] was used for solution and structure refinement.
Refinement and the final R indices: R} = 0.0432 [[>20(])],
wRj = 0.1050 [I>206(I)], Ry = 0.0772 (all data), wRp = 0.1355
(all data), S = 1.004. Deposition number CCDC 1054153
contains the supplementary crystallographic data for this
structure. These data can be obtained free of charge from
the Cambridge Crystallographic Data Centre via http://
www.ccdc.cam.ac.uk/data request/cif.

8-Ethyl-2-(2-nitrophenyl)-8 H-thieno[2,3-
blindole (12f)

Yellow powder; Yield 530 mg (82%); mp 103-104 °C;
'H NMR (400 MHz, DMSO-dg) & 7.94 (d, J = 7.8 Hz, 1H),
7.87 (d, J=17.8 Hz, 1H), 7.77-7.71 (m, 2H), 7.67-7.53 (m, 3H),
7.33-7.27 (m, 1H), 7.22-7.13 (m, 1H), 4.37 (q, J = 7.2 Hz, 2H),
1.41 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, DMSO-d;) &
148.9, 143.0, 140.8, 132.5, 131.7, 128.6, 127.6, 127.0, 123.9,
123.3, 122.4, 121.3, 119.6, 119.4, 118.7, 110.0, 40.4, 13.5;
IR(DRA): 482, 549, 567, 584, 646, 662, 685, 700, 738, 746,
770, 834, 845, 861, 919, 941, 953, 986, 1015, 1052, 1084, 1134,
1162, 1204, 1251, 1267, 1283, 1296, 1331, 1375, 1399, 1411,
1439, 1464, 1484, 1532, 1570, 1599, 1652, 1751, 1788, 1836,
1871, 1909, 1936, 1969, 2332, 2736, 2889, 2936, 2974, 2989,
3075, 3058 cm™!; Anal. calcd for C1gH14N,0,S: C, 67.06; H,
4.38; N, 8.69; found: C, 66.98; H, 4.35; N, 8.72.
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