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Dynamics of colloidal suspensions of ferromagnetic particles in plane Couette flow: Comparison
of approximate solutions with Brownian dynamics simulations
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The stationary and oscillatory properties of dilute ferromagnetic colloidal suspensions in plane Couette flow
are studied. Analytical expressions for the off-equilibrium magnetization and the shear viscosity are obtained
within the so-called effective field approximation. We also investigate the predictions of a different approxi-
mation based on the linearized moment expansion. Direct numerical simulation of the kinetic model are
performed in order to test the range of validity of these approximations.
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I. INTRODUCTION various shear rates in stationary plane Couette flow with the
magnetic field oriented in gradient direction are presented in
The prediction of macroscopic properties of magnetic flu-Ref. [15].
ids, such as the magnetization or viscous properties, from a
microscopic model remains—despite much efforts—a prob- Il. MODEL DEFINITION
lem of current researcfil—3]. We here obtain approximate
expressions of macroscopic properties and test their range of We consider a dilute solution afidentical rigid ellipsoi-
validity by comparison with Brownian dynamics simulations dal ferromagnetic particles per unit volume in a nonpolar
of the underlying kinetic model. Newtonian solvent. The shape of the ellipsoidal particles is
For very dilute systems, a kinetic model has been procompletely described by the axis ratio In Refs.[6,7], a
posed in Ref[4] that successfully describes many eXperi_distributio_n of axis ratios are considere_d in orde_r to account
mental results. For nondilute ferromagnetic colloidal suspenfor Polydispersity effects in the chain-formation process.
sions a general statistical theory remains to be developed. RINce in Refs[6,7] the chains are assumed to be noninter-
order to account for the effects of chain formation in nondi-2¢ting, It |s.suff|C|ent to'con5|de'r a monodlspe'rse §ystem n
lute suspensions, the authors of Ré&6] have proposed a th_e sequel_ in order_to discuss different approximation to the
phenomenological extension of the kinetic model for verym'(\:/(/OSCOIOIC dy?haT't%S‘ ientatiorof lipsoidal particl
dilute suspensions, which is able to describe several rheoc'oinc? daéssssvrir:ﬁ thz anﬁsgtrrlggyaallgir:o?rtlhee 'S:?[:Clae Qﬁ:e'f] ethe
logical properties of ferrofluids in agreement with experi- ; R ] '
mgntal F:es?JltiZS]. It should be megrlwtioned that differFt)ent magnetic moment of a particle is given py= uu, where,

£ chain f . read — Ref the magnitude of the magnetic moment of a patrticle, is con-
aspects of chain formation are already studgb, e.g., Ref. stant. Letf(u;t) denote the probability distribution function

[9], and references thergirSimilar models are also used to ¢ 5 ferromagnetic particle being oriented parallel to the unit

describe magneto- and electrorheological fluigee, €.9., yectoru at timet. The normalization is chosen such that

Ref.[10], and references thergin _ fd?u f(u;t)=1, where the integration is performed over the
In Refs.[6,8], an approximate solution to the extended three-dimensional unit sphere.

kinetic model was employed in order to obtain its macro-  The time evolution of in the presence of a local potential

scopic viscous properties. Alternative approximations to this\/(u) and a velocity fieldv(r) is given by the kinetic equa-
model have been considered in Réf11]. While the qual-  {jon'[2,6,11

ity of different approximations to the kinetic model of dilute

systems, Ref[4], has been discussed in the literatisee

Refs.[12,13), we here compare the predictions of different  5,f=— ..

approximations for the macroscopic magnetization and vis-

cous properties to the numerical solution of the kinetic model @

of Ref.[6]. No comparison on the level of distribution func-

tions is made since the approximations are constructed tn Eq. (1), we have introduced the rotational operator

derive macroscopic properties. We consider the case of weak=uXxd/du, the friction coefficient{, of an ellipsoidal

stationary and small amplitude oscillatory Couette flow. Forparticle with axis ratia in a Newtonian solvent with viscos-

a discussion of a particular approximation to the off-ity ns. The diffusion coefficientD,=kgT/{,, with kg, T

equilibrium magnetization in a more general flow situationBoltzmann’s constant and temperature, respectively, defines

see Ref.[14]. Numerical results of viscous properties for the Brownian orientational relaxation time=(2D,) 1. The
vorticity  and the symmetric velocity gradie of the
velocity fieldwv(r) are defined a§2=V Xv/2 andD=[Vuv

*Email address: ilg@physik.tu-berlin.de +(Vv)T"]/2. Finally, the so-called shape factBris defined
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asB=(r?—1)/(r?+1). In the case of spherical particles, 1. APPROXIMATE SOLUTIONS OF THE KINETIC
=1, B=0, Eq.(1) reduces to the kinetic equation proposed MODEL FOR WEAK FLOWS
in Ref.[4].

In the case of weak velocity gradients, the symmetric part

In the following, we consider the case of a local magnetic of the stress tensdr ® is well approximated by

field H where the local potenti&V is given by
S_— . .
V(U):_M'H:_kBTU'h. (2) T _2775(1+5¢Q1)D+57]S¢{2Q3(D <UU>O+<UU>0 D)

_ . _ o — Qag{uuuu)o: D+ Qo(W- (uu)g
In Eq. (2), we have defined the dimensionless magnetic field
h=uH/kgT. For later use, we define the amplitudeof h —(uu)o- W= uu))}, 8
(Langevin parameternd the unit vector in the direction of
the magnetic fielch, h=hh. The stationary solution to Eq.
(1) in the absence of flow gradients is given by the Boltz-
mann distribution

where(*), denotes averages with the equilibrium distribu-
tion function fo. Thus, in order to evaluate the full stress
tensor, knowledge of the momers) andd,(uu) is necces-
sary. From Eqgs(4) and (5), we observe that the moment
equations form a hierarchy and that it is impossible to arrive
fo(u)= mexp(h-u). (3)  rigorously at a closed set of equations for low order mo-
ments. This is true, in particular, for the magnetization and
the hydrodynamic stress tensor. This so-called closure prob-
lem occurs in many branches of statistical physics and an
=nu and ()= [d?usf(u;t) denotes averages with respect enorrgqus r?mlc_)unt of ClzosTre r?_pproximgtic_)ns havedl_:)een pro-
to the distribution functiorf. In the stationary staté3), the posed in the literaturé2]. In t.'s cpntrl ution, we discuss
two particular closure approximations that have been pro-

magnetization is thereforéy=MgL,(h)h, whereL(x) posed in Refs[6] and[4], respectively.
=coth)—x ! is the Langevin function.

From the kinetic equation the following moment equa-
tions are derived by multiplying Eq1) with u anduu, re-

The macroscopic magnetization is given M= Mg {u),
where we have defined the saturation magnetizalvby,

A. Effective field approximation

spectively, and subsequent integration ower The result The effective field approximatiofEFA) was introduced
reads[6,11] in Ref.[4] to solve the closure problem for the kinetic equa-
tion (1) in the case of spherical particleB£0). The EFA,
Tou)+(U)=7QX(u) +B7(D-(u) —(uuu):D) which can be interpreted as the quasiequilibrium approxima-
1 tion for the lowest order moment 6fsee Ref[11]), can also
+§(h—<uu)~h) (4 be applied to the case of rigid ellipsoidal particles wigh

#0. Within the EFA, the nonequilibrium distributiohis
assumed to be of the equilibrium for(®) but with the mag-
and netic fieldh replaced by an effective fielg,. Splitting the

effective field&,= &.£, into its normé&, and unit vectoré,

1
7'07t<uu>+3< uu—§1> =7W-{uu)—{uu)- 7W+B7(D-(uu) Eq. (4) becomes within the EFA

d¢ d 2(&e)
1 L e
+(uu)- D 2(uuu):D) + 5 (h(u) at dg" Ll(fe)) (3B§e L) D Eebe
h. .
+(uh—2(uuu)-h). (5 +§—h-§e—1) 9)
e
The hydrodynamic stress tensbrfor an incompressible and
dilute suspension of rigid ferromagnetic ellipsoids can be?"
decomposed into its antisymmetric part d z
dt _TQX§9+Ba(§e)(D fe &eéeée D)
(6)
1 1
and its symmetric part® (see, e.g., Ref$2,6,11]). The lat- 1\Se e
ter can be expressed with the help of Es). as wherea(x) =1—2L,(x)/[xL,(x)]. FunctionsL;(x) are de-
T°=2741+5¢Q1)D+57s${2Q3(D-(uu)+(uu)-D) fined recursively byL;,i(x)=L;_1(X)—(2j+1)L;(x)/x
) with Lo(x)=1 and L, is the Langevin function2]. For
~ Qag{uuuu): D+ Qo(W-{uu) — (uu)- W= di{uu)) }. small amplitude oscillatory flow with frequenay and con-

7 stant magnetic fieldh, explicit expressions for the resulting
effective field may be obtained. Consider small deviations of
The geometric coefficien®; are defined in the Appendix A. the effective field from the equilibrium valu&y &= §é.—h,
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A&e=&.—h with |A&.|<h and letA £, denote the direction

of the off-equilibrium magnetization perpendicular to applied

magnetic field AZ,- h=0. Keeping only lowest order terms

in the deviation from equilibriumé&,= h+A&h+hAZ,, the
nonequilibrium distribution function simplifies to

fe(u)=fo(W)[1+A& u—A&Ly(h)].

It is readily verified thatf., Eq. (11), is normalized,
Jd?u f,(u)=1. Equations(9) and (10) become, with the
help of Eq.(11) and linearization in the deviation from equi-

(1D

librium,
(. bl T Lthy
Aé()=|1+iTw Ll(h)) 3BL1(|’1) 7D(t):hh,
(12)
AE(D)=[1+iT0B(h)] 1B(h)et), (13
where

e(t)=7Q(t) X h+Bra(h)[D(t)-h—hhA:D(t)], (14)

and B(x)=2L,(x)/[x—L1(x)]. In Egs. (12 and (13), we

PHYSICAL REVIEW E 67, 061401 (2003

AL = (L) (17)

d 1 )
— |+ Zh.c2h)

(18

. . d . .
AR = C(Z'J)( 3+ rril (hC(l’J))sym"” h.CcGd,

for j=1,2, and the correlation functions of the order jof
+k given by

CYP=(u.. . uu..  uwyo—{(u.. ulu... u.
[ S — S—— S——
i k J k

(19

The notation (), implies symmetrization after multiplica-
tion with a andb, respectively. We assume that the moments
(u) and{uu) oscillate with the same frequeney as the
applied flow. Then, the differential operatof$')) become
ordinary, complex matrices and the resulting algebraic sys-
tem of linear equation€l6) can be solved for the coefficients

a andb by matrix inversion.

IV. COMPARISON TO BROWNIAN DYNAMICS
SIMULATION

have assumed that, after the oscillatory flow has been applied

for a sufficiently long time, the effective field oscillates with
the same frequenay as the applied flow. The predictions of

In the sequel, we consider exclusively the case of plane
Couette flow,v(r;t)=(y(t)y,0,0), where y(t) denotes the

the EFA in case of weak stationary flow are obtained fromshear rate. The case of stationayft) = v, and oscillatory

Egs.(12)—(14) for =0.

B. Linearized moment expansion

y(t) = vo€' ! flow is considered separately. Thédke num-

ber is defined as ReT'yo. Since the approximations intro-
duced in Sec. Il apply for weak flows, we choose=REl in

In order to solve the closure problem, the authors of Refthe sequel. We here consider magnetic fields that are oriented

[6] expand the distribution functioharound the equilibrium
distribution

f(u)="fo(u)[1+a-(u=(u)o)+b:(uu—(uu)o)], (15

with unknown coefficienta andb. The normalization of is
ensured sincé»), denotes averages with the equilibrium dis-
tribution function (3). Ansatz(15) is valid for small Pelet
number flows, wher@ andb are first order in the velocity
gradient. Note that the linearized EFA, EGl), is obtained
as a special case of EQL5) for b=0, since within the EFA
the corresponding term is second order in the deviation fro
equilibrium. The linearized moment expansigoiME) as-
sumes that the coefficientss and b are independent of the
orientation u. Inserting the ansatfl5) into the moment
equationg4) and(5) and linearization in the velocity gradi-

either in flow or in gradient direction. For magnetic fields
that are oriented in the vorticity direction of the flow see Ref.
[11]. Two representative values for the axis ratioave been
choseny =2 andr=5. Whiler =1 corresponds to spherical
particles that have been studied previously in REfg,13,
values ofr =5 give very similar results since in this case the
shape factoB is close to one.

In order to discuss the quality and range of validity of the
approximations presented in Sec. lll, we compare those pre-
dictions to the numerical solution of the kinetic equati@n
To this end, we perform Brownian dynami¢8D) simula-

Mions of the correspondinglstochastic differential equation

of the stochastic proceds; [11],

dU,=P,-[(QXU,+BD- U+ D,h)dt+dW,]— D,Udt,
(20

ents leads to the following system of linear equations for the

unknown coefficients andb:
ALD. g+ AL2:p=ED),
ACD. g+ AR2:p=E?) (16)

where E®) and E® denote the right-hand side of Eqg)

where P,=1-U,U; and W, is a three—dimensional Wiener
process. By constructiodn(Uf)zO due to Itcs formula. En-
semble averages of arbitrary functioAgU,), whereU, are
solutions to Eq(20), converge with increasing ensemble to
averagesgA(u)), with the correct distribution function. In
order to achieve accurate averages, an ensemhbe=cf0®

and(5) for h=0, respectively, if all averages are performedunit vectorsU, is evolved. As done in Refl11], we use a

with the equilibrium distribution functiory. In Eq. (16), we
have defined the quantities

weak first-order scheme to integrate E80) numerically,
keeping the normalization fixeduf= 1.
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0.335- ] In order to obtain the resulting shear viscogil), expres-
r b D 1 . N o
50331 o sions for the off-equilibrium magnetization have to be found.
= 03251 5 The predictions of the EFA for stationary Couette flow are
032 o . obtained from Eqs(12)—(14) by settingw=0. One obtains
0315 3 o) . for the stationary off-equilibrium magnetization
L o] ]
poed S MEF— Loy, . 2L3(h)
0.305 0.001 0.01 0.1 — 0= e————hh h+l—e,
’ ) ) M at Li(h)y Y h=Ly(h)
At/z (23

FIG. 1. The dependence of the stationary magnetizat®n

where the vectoe, Eqg. (14), takes the form
My /Mgy, (0) My /Mgy, on the time stepht of the numerical inte- a.(14

gration for the _dimensionlgss magnetic fidek (0,1,0). A plane F‘y{1+ Ba(h)[l—Zﬁi]}

Couette flow with constant ket number Pe 0.1 was considered 1 R X

with x the flow direction and/ the gradient direction, respectively. e=-P¢g hJ—1+Ba(h)[1-2hR2]} |. (29
; . S 2 y

The value of the axis ratio of the ellipsoid was choserr a$. A noA

Symbols represent time averages of the result of the BD simula- _ZBa(h)hxhyhz

tions, the errorbars show the corresponding standard deviations. ) )
From Egs.(23) and (24), the asymptotic behavior of the

A. Stationary flow off-equilibrium magnetization, if the magnetic field is ori-

ented in flow direction f=1) or in gradient direction g
First, consider the case of statlonary plane Couette flow,:z) is given by

v(r)= (yoy 0,0), with constant shear ra@ The BD simu-

lations, Eq.(20), were started either from the equilibrium, E[ 1P+ 2 B for h—0

Eq. (3), or from a perfect oriented distribution and integrated 3

for a fixed time stepAt. The same stationary state was at- MEFAIM =P 5 (25
tained after~57, independent of the initial configuration. a [(—1)P+B] for h—o,

Results for the stationary values were extracted as time av-
erages for 18<t<20r at times 0.%. Error bars for the
simulation results are determined by the standard deviatio
of the mean.

Figure 1 shows the influence of the time st&p on the
simulation results for the stationary magnetization for
=0.1 and magnetic field oriented in gradient direction wit
h=1. The axis ratio of the ellipsoid was chosenras5.
From Fig. 1, we notice that the results are more or less in-
dependent of the time step fart/ r<=10" 2. Thus, we choose

. g . X A EFA_ mkgT hL2(h)
a time stepAt=10 "7 in the sequel in order to obtain accu- 7k > Rl mYy
rate stationary results. L1(h)

The shear viscosity),, is defined asy, = Tyx/'yo, where  \here
the hydrodynamic stress was evaluated from Egjsand(7).

herev=x for p=2 andv=y for p=1. Thus, within the

FA, the off-equilibrium magnetization increases linearly
with h for h<1, the slope being related to the shape fa&or
pe of the colloidal part|cles Fan>1, the off-equilibrium mag-
hnetlza'uon decays ds ! where the prefactor depends Bn
From magnetizatiori23), the antisymmetric contribution to
the shear viscosity within the EFA is easily obtained,

gl2(h), (26)

The symmetric and antisymmetric part of the stress tensor, 9{@(h)=h2+h2+Ba(h)(h2—h?2). (27)
Egs.(6) and(7), define symmetric and antisymmetric contri- Y Y Y
butions to the shear viscosity,,, The predictions of the LME are obtained by solving the sys-

tem of Eqgs.(16)—(18) for the coefficientsa and b. If the
magnetic field is oriented in flowgradienj direction, only

. the components, (a,) andb,, are nonzero. In the station-
For weak flow,7y,<1, the symmetric contribution to the ary state, the differential operatofs; , Egs.(17) and (18),
shear viscosityr;jX can be obtained from E(@8) in the sta- become ordinary matrices and the coefficieatand b are
tionary state, obtained by inversion of a:22 matrix[6]. Having obtained

Myx= Tyx T My (21)
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FIG. 2. Stationary off-equilibrium magnetizatiod , /Mg in

| c fl f . fthe L : metdih FIG. 3. Stationary relative change of shear viscosity, in
plane _out_atte owas a unc_tlon 0 _t € Langevin para tdihe plane Couette flow as a function of the Langevin parametdihe
magnetic field was oriented in gradient direction. Thel®enum-

magnetic field was oriented in gradient direction. Thel®enum-

bgr was chosen as P@.1. .Symbols represent the .result OT th.e BD ber was chosen as P®.1. Symbols represent the result of the BD
simulations. The EFAfull line) and LME (dashed lingare indis- simulations, full line corresponds to the EFA, dashed line to the

tln_gunsh_abli vr\]nthlr;l_the_(rjesolutlc;}n of the ggfure.hThle value gf the | viE. The value of the axis ratio of the ellipsoid was chosemn as
axis ratio of the ellipsoid was chosen s 2 for the lower an =2 for the lower and =5 for the upper curves.

=5 for the upper curves.

tion. Indeed, the results of the BD simulations agree with the
predictions of the EFA quantitatively for weak and strong

fields. However, the values &, for intermediate values of

h are not accurately described by the EFA. The LME on the

the coefficientsa and b, the antisymmetric contribution to
the shear viscosity is found by

avLME:M La(h) h.—ah contrary provides a much better description of the BD results
Myx (ax y 8y %)
2% h for all values ofh.
Lo(h Figure 5 shows the relative change of the shear viscosity
+2 2 )(bxyﬁyﬁy—byyﬁyﬁx) _ (29) Ayx(h) for the same gond?tions_ as in Fig. 4. We obser_ve an
h increase of the effective viscosity for all valueshofor axis

) . . . ratior=2, while in caser =5 the effective viscosity is de-
~ Figure 2 shows the stationary off-equilibrium magnetiza-creased for sufficiently strong magnetic fields. From Fig. 5,
tion My=Mgy(Uy) for magnetic fields oriented in gradient \ye ohserve that the EFA is in qualitative agreement with the

direction,h=(0h,0). The Pelet number was chosen as Pe yegyits of the BD simulation and provides quantitative accu-
=0.1. From Fig. 2, we observe that both, the EFA and LME

predict the increase dfl, with increasingh for h<h; and 0
the slow decay foh>h., where the value of the critical
dimensionless magnetic field lg.~2.5 and 2.6 for axis ra-
tios r=2 andr=5, respectively. While the EFA slightly
overpredict the values dfl, nearh;, the LME is almost
indistinguishable from the results of the BD simulation for
all values ofh. Z:;
Figure 3 shows the relative change of the shear viscosityo>
Ayy=[nyx— 75(0)]/ Tnkg T with and without magnetic field
as a function oh. Here,nf,x(O) denotes the symmetric shear
viscosity(22) evaluated ah=0. Same as in Fig. 2, the mag-
netic field is oriented in gradient direction and theclee
number was chosen as®6.1. From Fig. 3, we observe that
the agreement of both approximations with the result of the %% ' s ' m ' 5 ' 20
BD simulations is excellent for axis ratios=2 andr =5 and Langevin parameter

all values ofh considered. .. .. FIG. 4. Stationary off-equilibrium magnetizatiod, /M g in

Now we consider the case where the magnetic field igane Couette flow as a function of the Langevin paramietdine
oriented in flow direction. The EFA predicts that in this casemagnetic field was oriented in flow direction. ThécRe number
the off-equilibrium magnetizatioM, points in the direction  was chosen as Ped.1. Symbols represent the result of the BD
of decreasing velocity, see E(®5). In Fig. 4, we show the  simulations, full line corresponds to the EFA, dashed line to the
reduced off-equilibrium magnetizatiodl, /Mg, as a func-  LME. The value of the axis ratio of the ellipsoid was chosem as
tion of h, where the magnetic field is oriented in flow direc- =2 for the lower and =5 for the upper curves.

-0.01
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02 - - - - As before,y=x, p=2 corresponds to the magnetic field that
are oriented in gradient direction, while=y, p=1 applies
if the magnetic field is oriented in flow direction.

The result of the EFA for the real and imaginary part of
the effective complex shear viscosity is

0.1

3 5 (10)2B%(h) .
< 0 ’ I
nw=n;—im@quﬂﬂl+”wyﬁ%mgw00
0.1 + 7-nkBT hLl(h)B(h) ~(2) h 31
4 2 52 gyx( )1 ( )
1+ (7w)?B7(h)
-02 ; ; ; ; |
() 5 10 15 20 5 TwB(h) “
no_ = R A A 5
Langevin parameter Myx~2 773¢Q0L2(h)1+ (10)2B%( h)gyx (h)
FIG. 5. Stationary relative change of shear viscosity in
plane Couette flow as a function of the Langevin paramietdine kgT (rw)hL;(h)B%(h)..
k B 1 2)
magnetic field was oriented in flow direction. ThécRe number T2 1+ (r)2B2(h) gyx (h), (32

was chosen as Rd.1. Symbols represent the result of the BD
simulations, full line corresponds to the EFA, dashed line to the
LME. The value of the axis ratio of the ellipsoid was choserr as Where
=2 for the upper and=5 for the lower curves. R N R A

g =h7—hZ+Ba(h)(hi-4hZh2+h%). (33
rate predictions in case of weak and strong magnetic fields.
For intermediate values & however, the predictions of the For vanishing frequencyy—0, 7{,—0 and 7y, reduces to
EFA underestimate the results of the BD simulation. In thisthe stationary viscosityy,,. The low and high frequency
case again the LME provides an improvement compared tbehavior is given by
the EFA.

Nyx— ay(tw)? for ro<1

Nyx( @)= { , (34)

B. Oscillatory flow a, for rw>1,

Now, we consider the case of oscillatory Couette flow,
v(r;t)_=(')/(t)y,0,0), with oscillatory shear rate y(t) ngx(w)z[
= y,€'“' andy,= yow. The BD simulations were performed
for constant amplitudey, for different frequencies, where
the time step of integration was reduced for high oscillationVhere
frequenciesy. After initial transient dynamics, an oscillatory 5 ke
stress response with frequenayis observed. The effective 2= 7epQoL B2 + —BhLlﬁ3g§,§),
complex shear viscosityn,,(w) is defined by T, 2 4
= Nyx() y(t). Decomposingyy, into its real and imaginary -
part, 7y,= 75— 7, 1} and 7], are determined from the ag=ay/B, a.=ag/B%, and a,= 7y~ (5/2) 75 QoL. 20 -
in-phase and out-of-phase response of the stress. Errors iin Figs. 6 and 7, the dimensionless effective viscositigs
determiningzy, and 7y, are estimated on the basis of the fit =(7,— 7)/mksT and 6j,= 7j,/ TnkgT are shown as a func-
values for the amplitude and phase lag of the oscillatorytion of the frequencyw of the applied shear flow. The mag-
stress response. Storage and loss moduli are related to thetic field was oriented in gradient direction with the
complex shear viscosity b’ (w)=w7{,(w) and G"(v) strengthh=1. The axis ratios are=2 andr=5, respec-

ayTw for rw<1

35
all(rw) for ro>1, @9

= wﬂ{/x(w)- tively. From Figs. 6 and 7, we observe that the EFA provides
Decomposing the resulting time-dependent magnetizatiog good approximation fore <1, while its accuracy for high
into M(t)=M’(t) —iM"(t), the EFA predicts frequencies is poor. The LME is found to be accurate for all
values ofrw investigated here.

, 1. B(h)Ly(h) Figure 8 shows the dimensionless effective viscosii
MV/Msat_iTy(t)[(_ P Ba(h)]1+(7w)232(h) ’ and gy, for the same conditions as in Fig. 7 but for a s%?)ng
(29) magnetic fieldh=10. From Fig. 8, we deduce that in this

case both approximations provide an accurate description of
the BD results for all values ofw. In addition, the low
_ frequency expansion, given by the first part of E@l) and
(Tw)?B?%(h) (35), respectively, provide an acceptable description of the
(30 BD results forro<2.

. 2(h h
MyMwF%rwon—1w+Bamnf$5i15il
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FIG. 6. Dimensionless complex effective viscosity in oscillatory ~ FIG. 8. Dimensionless complex effective viscosity in oscillatory
shear flow as a function of the reduced frequeney The real part  shear flow as a function of the reduced frequeney The real part
6y corresponds to the upper and the imaginary pgyto the lower fyx corresponds to the upper and the imaginary parto the lower
curves. The same conditions as in Fig. 2 were chosenmwith and  curves for small values ofw. The same conditions as in Fig. 2
h=1. were chosen witlh=5 andh=10. The dotted lines correspond to

the low frequency expansion, E(4) and(35) for small 7w.
V. CONCLUSIONS

In the present contribution. we hav moared the oredicceVe that the predictions of the effective field approximation
tion fg ﬁsfni cor ;Jti on. f?jiffarenio p? ?(im tei"?]etcbecome less reliable with increasing frequency, while the
ons of dynamic properies o erent approximations 0predictions of the linearized moment expansion deviate only

the kinetic model proposed in Ref6] to the result of : ; : -
Brownian dynamics simulation. We found that the eﬁectivesnghtly over the whole frequency interval investigated here.

field approximation and the linearized moment expansion
provide very good approximations to the stationary off- ACKNOWLEDGMENTS
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diate values of the Langevin parameterThe LME shows ' '

good agreement with the simulation data for the whole range

of h. For small amplitude oscillatory Couette flow, we ob- APPENDIX: GEOMETRIC COEFFICIENTS

The geometric coefficient®; depend only on the axis

06— ' ' ' ' ratio r of the ellipsoid and are given explicitly HyL1]
I 2(r2—1)2
R PPN
S04 k\!\ _ 5re(2rep—p—1)
= -~
g 3~
= i S _ 0 4(r2-1)?
- ~ W = )
2 T ' 5r2(3p+2r2-5)
~ o2 i
2 _ 2_
I ’g"}?ﬂw_s_'—-.-.,__a__‘_‘_‘- ) | Q2=2Ql 1— 2re+1—(4r 1B ,
%\‘ bl b L SR 3 4(2r>+1)p—12
0 L 1 L 1 L 1 L 1
0 2 4 6 8 10 0,-0 [r3(B+1)—2](3B+2r?—5) .
0 = _
v SN arpari-1)- 112+ 2-3r2p)
FIG. 7. Dimensionless complex effective viscosity in oscillatory (A1)

shear flow as a function of the reduced frequeney The real part
0)’,X corresponds to the upper and the imaginary ﬁ@{to the lower and
curves. The same conditions as in Fig. 2 were chosenrwith and

h=1. Q23=3Q,+4Q;3, (A2)
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for convenience, where Qo

{r= 107]st ) (A4)

1 coshir for r>1

=X
r[r7=1]  |cos'r for r<i.

(A3) wherev =% mab? is the volume of the ellipsoid. Equation
(A4) corrects a misprint in EqgB1) and (B3) of Ref. [11].
In Refs.[2,6], a different notation for the coefficientd; is

used, B,=5¢Qo, an=5¢Q1, {n=5¢(2Q3—BQp), xn=
The rotational friction coefficient, is given by —5¢(Q3—2BQyp), \,=B, andn=r.
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