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We synthesize and study single crystals of the layered honeycomb lattice Mott 

insulators Na2RuO3 and Li2RuO3 with magnetic Ru4+(4d4) ions. The newly found 

Na2RuO3 features a nearly ideal honeycomb lattice and orders antiferromagnetically at 30 

K. Single-crystals of Li2RuO3 adopt a honeycomb lattice with either C2/m or more 

distorted P21/m below 300 K, depending on detailed synthesis conditions. We find that 

Li2RuO3 in both structures hosts a well-defined magnetic state, in contrast to the singlet 

ground state found in polycrystalline Li2RuO3.  A phase diagram generated based on our 

results uncovers a new, direct correlation between the magnetic ground state and basal-

plane distortions in the honeycomb ruthenates.  
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Introduction It has been of great interest to study interacting electrons on the 

honeycomb lattice in various contexts both experimentally (e.g. graphene) and 

theoretically (e.g the Kitaev model). Studies of honeycomb materials have intensified in 

recent years [1-19] in part because strong spin-orbit coupling (SOC) along with other 

competing interactions and geometric frustration in the honeycomb iridates Na2IrO3 and 

Li2IrO3 favors a highly anisotropic Kitaev interaction [20] that stabilize exotic ground 

states such as topological spin-liquids [1]. It is now experimentally established that 

Na2IrO3 exhibits a peculiar zigzag magnetic order at TN=18 K [5, 14, 15], and Li2IrO3 

also orders at TN=15 K but with a different ground state yet to be defined [3, 17, 21, 22, 

23]. Indeed, for (Na1-xLix)2IrO3 with 0 ≤ x ≤ 0.90, the measured phase diagram 

demonstrates a dramatic suppression of TN at intermediate x suggesting that the magnetic 

order in Na2IrO3 and Li2IrO3 is different; however, no spin liquid has been observed thus 

far [17]. Our pursuit of an understanding of the honeycomb iridates has led us to their 

ruthenate counterparts, Na2RuO3 and Li2RuO3.  These materials feature Ru4+(4d4) ions 

and a weaker or “intermediate strength” SOC (~ 0.16 eV, compared to ~ 0.4 eV for Ir 

ions) [24]. The different d-shell filling and contrasting hierarchy of energy scales 

between the ruthenates and iridates provide a unique opportunity for a deeper 

understanding of the fundamental problem of interacting electrons on the honeycomb 

lattices.  The magnetism of Ru4+ ions as well as other heavy “d4 ions” (such as Rh5+(4d4), 

Re3+(5d4), Os4+(5d4) and Ir5+(5d4)) is interesting in their own right, as emphasized 

recently [25]. Materials with heavy d4 ions tend to adopt a low-spin state because larger 

crystal fields often overpower the Hund’s rule coupling. On the other hand, SOC with the 

intermediate strength may still be strong enough to impose a competing, singlet ground 
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state or an angular momentum J=0 state. Novel magnetic states may thus emerge when 

the singlet-triplet splitting (0.05-0.20 eV) becomes comparable to exchange interactions 

(0.05-0.10 eV) and/or non-cubic crystal fields [25-27].  This is evidenced in a recent 

study of materials containing 5d4 ions [28].  

Up until now, no physical and structural properties of Na2RuO3 have been 

investigated but a few experimental and theoretical studies of polycrystalline Li2RuO3 

have been reported in recent years [29-32]. In essence, polycrystalline Li2RuO3 

undergoes a structural phase transition near TD=540 K that features a change of space 

group from C2/m (No. 12) at high temperatures to P21/m (No. 11) at low temperatures. 

The low-temperature phase adopts a strongly distorted honeycomb lattice, which prompts 

a simultaneous dimerization that results in a singlet ground state [29]. The observation of 

dimerized zigzag chains has recently stimulated more investigations of Li2RuO3 [30-32], 

in which the dimerization is attributed to orbital ordering [29], creation of valence bond 

crystal [30] and Jahn-Teller distortions [31], respectively. It is noted that all reported 

experimental results were culled from polycrystalline Li2RuO3 [29, 31, 32].   

Here we report structural, magnetic, and thermal properties of single-crystal 

Li2RuO3 and Na2RuO3. The newly found Na2RuO3 with space group C2/m features a 

nearly ideal honeycomb lattice and orders antiferromagnetically below 30 K. It may serve 

as a reference for almost perfect honeycomb symmetry. On the other hand, single-crystal 

Li2RuO3 adopts a less ideal honeycomb lattice with either C2/m or more distorted P21/m 

below 300 K but both phases exhibit a well-defined, though different, magnetic state, 

which sharply contrasts with the singlet ground state due to dimerization observed in 

polycrystalline Li2RuO3 [28]. This work produces a phase diagram that uncovers a direct 
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correlation between the ground state and basal-plane distortions or lattice-tuned 

magnetism in all honeycomb ruthenates studied. (Both Li2RuO3 and Na2RuO3 are highly 

insulating; their transport properties are not included in this paper.)    

Crystal Structures Single-crystals of Li2RuO3 and Na2RuO3 were synthesized using 

the self-flux method, which is described elsewhere [17]. For synthesis of single-crystal 

Li2RuO3 the mixed chemicals were first heated up to 1250 oC and then cooled to 900 oC 

at 2 oC/hour and finally room temperature at 50 oC/hour. In contrast, the polycrystalline 

Li2RuO3 was synthesized at much lower temperature of 950 oC. The different synthesis 

conditions may have important implications for the ground state of Li2RuO3. For more 

experimental details, see Supplemental Material [33]. Crystal structures on which the 

ground state so sensitively hinges require a close examination. Table 1 includes the 

lattice parameters of single-crystals Li2RuO3 and Na2RuO3 as well as those of 

polycrystalline Li2RuO3 and iridate counterparts for contrast and comparison.  For the 

sake of discussion, single-crystal Li2RuO3 with C2/m and P21/m are labeled as Li2RuO3 

(C) and Li2RuO3 (P), respectively.  A major distinction between Li2RuO3 (C) and 

Li2RuO3 (P) is the number of unequal Ru-Ru bond distances, which measures distortions 

that in turn dictate the ground state. Li2RuO3 (C) features two bond distances, or a long 

and short one, Ll and Ls, respectively, whereas Li2RuO3 (P) has three bond distances, i.e., 

Ll, Ls, and a medium bond distance, Lm.  The basal-plane distortion is characterized by the 

bond difference ratio defined as (Ll-Ls)/Ls, which is shown in Table 1, Figs 1a and 1b. In 

general, honeycomb lattices with C2/m tend to have a larger a-axis lattice parameter and 

smaller ratio b/a (~ √3) than those with P21/m, thus less distorted. Figs.1c and 1d 

demonstrate the lattice parameters of single-crystal and polycrystalline samples as a 
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function of temperature. As seen, no structural transition is discerned in the single 

crystals studied for the temperature range measured. In short, the structural differences 

between the polycrystalline Li2RuO3 and Li2RuO3 (C) or Li2RuO3 (P) are distinguished 

by the different space groups or by the difference in (Ll-Ls)/Ls.  It is clear that Li2RuO3 

(P) is more distorted than Li2RuO3 (C) but much less distorted than the polycrystalline 

sample despite the same space group shared by both (Table 1).   

Table 1. Structural comparison between the honeycomb lattices at 100 K  
Compound Space Group a (Å) b (Å) b/a (Ll-Ls)/Ls 

Li2RuO3 (Powder)* P21/m 4.9210(2) 8.7829(2) 1.785 18.6% 
Li2RuO3 (P) P21/m 4.963(3) 8.766(6) 1.766 10.1 % 
Li2RuO3 (C) C2/m 5.021(4) 8.755(6) 1.744 2.1 % 

Na2RuO3 C2/m 5.346(1) 9.255(2) 1.731 0.17 % 
(Li0.9Na0.1)2IrO3 C2/m 5.186(1) 8.964(2) 1.728 0.6 % 

Na2IrO3 C2/m 5.319(1) 9.215(2) 1.732 0.14 % 
* Taken at 300 K 

Physical Properties Na2RuO3 exhibits a sharp antiferromagnetic (AFM) transition 

at TN=30 K, as shown in Fig. 2a. The magnetic anisotropy leads to a stronger out-of-

plane magnetic susceptibility χ⊥ than in-plane magnetic susceptibility χ||. The linearity 

illustrated in 1/Δχ|| (right scale in Fig. 2a) indicates that the data fit well with the Curie-

Weiss law for 100 < T <350 K, and yield the Curie-Weiss temperature θCW = -137 K and 

effective moment μeff  = 2.45 μB/Ru (Table 2). The frustration parameter defined as FP = 

|θCW|/TN is estimated to be 4.6.  This value suggests a presence of modest frustration, 

comparable to that for its iridate counterpart.  

 The magnetic ordering is confirmed by the specific heat C(T) (Fig. 2b). 

However, an additional peak at TN2 = 26 K that is absent in χ(T) is also seen in C(T). This 

behavior, which is reproducible, is remarkably similar to that observed in Na2IrO3 where 

an additional, weaker anomaly in C(T) is discerned at T* = 21 K that is followed by the 
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zigzag order at TN = 18 K [15, 17].  This two-step transition is discussed in context of the 

Kitaev-Heisenberg model on the hexagonal lattice [34]. A similar argument could be 

applied to Na2RuO3 although the origin of this magnetic behavior needs to be further 

investigated. The C(T) data also indicate that the entropy removal due to the two-step 

magnetic transition is small, less than 10% of Rln3 expected for an S=1 magnet. This 

implies that the magnetic ordering may not be fully developed perhaps in part because of 

the tendency of SOC to impose a singlet state. Application of magnetic field up to 14 T 

causes no visible changes in both C(T,H) and χ(Τ,Η).    

Table 2. Physical parameters of the single-crystal honeycomb lattices 
Compound TN θCW FP μeff (μB/Ru or Ir) 
Li2RuO3 (P) ~ 5      -58 11.6 1.46 
Li2RuO3 (C) 9      -112 12.4 2.77 

Na2RuO3 30 -137 4.6 2.45  
(Li0.9Na0.1)2IrO3 7      -18 2.6 1.95 

Na2IrO3 18 -119 6.6 1.76 
FP stands for frustration parameter  

The magnetic properties of both single-crystal Li2RuO3 (C) and Li2RuO3 (P) are 

examined for 1.7 < T < 900 K. Neither shows the singlet ground state observed in the 

polycrystalline Li2RuO3. Instead, Li2RuO3 (C) displays paramagnetic behavior at T > 20 

K with the magnetic susceptibility χ following the Curie-Weiss law for 20 K < T ≤ 750 K 

(Fig.3a).  Data fits to the Curie-Weiss law yield an effective moment μeff = 2.77 μB/Ru, 

consistent with that expected for an S=1 system, and a Curie-Weiss temperature θCW=-

112 K.  A signature for a long-range order near TN = 9 K is evident in both χ(T) and C(T) 

(Fig. 3b).  A large frustration parameter, FP = |θCW|/TN = 12.4 suggests the presence of 

significant frustration (Table 2). Indeed, the two unequal Ru-Ru bonds may favor a 

formation of zigzag chains along the a-axis (see schematic in the inset of Fig. 4) as the 

inter-chain interaction is weak due to the long Ru-Ru bond Ll. Therefore, no magnetic 
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ordering occurs until below TN = 9 K when three-dimensional correlations are 

established.   

For more distorted Li2RuO3 (P), a magnetically ordered state also takes place but 

at a lower temperature, TN = 4 K (Fig. 3c and 3d).  Remarkably, the magnetic anisotropy 

is much stronger, and the magnitude of χ⊥ is significantly larger than that in Li2RuO3 (C), 

implying the importance of SOC.   However, the temperature dependence of χ at high 

temperatures is much weaker than that for Li2RuO3 (C). The results suggest that Li2RuO3 

(P) is “half-way” to dimerization as the lattice is more similar to that of the 

polycrystalline sample; the magnetic state eventually prevails below TN = 4 K because 

Li2RuO3 (P) is after all not as distorted as the polycrystalline Li2RuO3.   

Computational Results Our LDA (local density approximation) calculations using 

the LMTO (linearized muffit-tin orbitals) method [35] and Wannier function projection 

method [36] show that the crystal-field splitting in the Ru t2g shell does not exceed 70 

meV, indicating that the comparable SOC may play a significant role. However, the off-

diagonal matrix elements of the Hamiltonian, hopping parameters, are even larger, ~ 200 

meV, which is strong enough to form the quasi-molecular orbitals (QMOs) similar to 

those in Na2IrO3 where QMOs involve six Ir atoms arranged in a hexagon and each Ir 

atom belongs to three different QMOs, which dominate the formation of electronic 

structure [13]. The results of the optimization of the crystal structure performed in the 

GGA (generalized gradient approximation) calculations using the pseudopotential 

method [37] indicate that the nearly ideal honeycomb Na2RuO3 indeed corresponds to a 

minimum of the total energy for an AFM state.  In addition, our GGA+U calculations 

show that a relatively small on-site Coulomb repulsion U ~ 1.5 eV is sufficient to 
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suppress the dimerization observed in polycrystalline Li2RuO3. The band structure of 

single-crystal Li2RuO3 strongly differs from that of both Na2RuO3 and Na2IrO3 on the 

LDA level (see SM Fig. 2 [33]); and consequently, there is no sign of the QMOs. 

According to a recent study [30], when one of QMOs (of E2u symmetry) is half-filled, 

the corresponding instability may induce the Jahn-Teller distortions (JTDs) that in turn 

lead to the dimerization. In less distorted single-crystal Li2RuO3, no sign of the JTDs is 

seen since the formation of the zigzag chains effectively removes the orbital degeneracy 

or JTDs. Therefore the zigzag chains constitute an alternative state to the dimerization 

when the JTDs are absent.  However, both the zigzag chains and dimerized lattice cost 

certain elastic energy that tends to stabilize uniform structure, and the prevailing state 

sensitively depends on details of the band structure and bulk modulus of the system (see 

SM [33] for details).    

Indeed, all relevant energies vigorously compete and critically bias their mutual 

competition to stabilize ground states.  This explains that there exist nearly degenerate 

states in these materials, and the prevailing ground state critically depends on details of 

the structure, as illustrated in Fig. 4. The magnetic ordering systematically decreases with 

increasing (Ll-Ls)/Ls and eventually vanishes at a critical value where the dimerization 

emerges, leading to the singlet ground state observed in polycrystalline Li2RuO3. All 

results strongly indicate a direct correlation between the ground state and basal-plan 

distortions. The newly found Na2RuO3 provides a reference for almost perfect 

honeycomb symmetry.  

The absence of the dimerization in single-crystal Li2RuO3 cannot be due to either 

impurity or quality of the single crystals. In fact, the singlet ground state is unusually 
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resilient to heavy impurity doping and is even enhanced by 5% Na doping (see Fig. 3 in 

SM [33]) and survives up to 50% Ir substitution for Ru in the polycrystalline samples 

[31]. It is likely that the difference between the two forms of Li2RuO3 arises from 

different synthesis conditions, as discussed above, which might cause different degrees of 

site-disorder in the honeycomb network due to the similar ionic radius of Li and Ru, 

and/or slightly different stoichiometry (e.g. oxygen content) (see SM [33]).  Hence, this 

work does not rule out the possibility that single-crystal Li2RuO3 having the same 

structural distortions and singlet ground state as polycrystalline Li2RuO3 may eventually 

form under certain synthesis conditions.  

The work also offers the following general observations. Both Li2RuO3 and 

Li2IrO3 are more structurally distorted and behave with more complexities than their Na 

counterparts. SOC is expected to impose a J=0 state for Ru4+(4d4) ions (and a Jeff=1/2 

state for Ir4+(5d5) ions) but the observed magnetic states in the honeycomb ruthenates as 

in many other ruthenates [25] indicate that SOC is not sufficient to induce a J=0 state. It 

is intriguing that all honeycomb ruthenates and iridates magnetically order in a similar 

temperature range (see SM-Fig. 4 [33]) despite the different role of SOC in them.  
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Captions 

Fig. 1. Diffraction images in the (h0l) plane of the single crystal Li2RuO3 with space 

group (a) P21/m and (b) C2/m. Insets: The corresponding honeycomb lattice and Ru-

Ru bond distances. The temperature dependence of (c) the a-axis and (d) the ratio b/a 

from our single crystal P21/m phase (blue), C2/m phase (purple), powder samples (red 

star), and powder data from Ref. 28 (black circles). Note that the sharp diffraction 

pattern clearly indicates the high quality of the single-crystal Li2RuO3.  

Fig. 2. Single-crystal Na2RuO3: (a) The temperature dependence of the magnetic 

susceptibility for the basal plane χ��(T) and out-of-plane χ⊥(T) for single-crystal 

Na2RuO3; Right scale: 1/Δχ�� where Δχ = χ−χ� and χ� is the temperature-

independent contribution to χ. (b) The temperature dependence of the specific heat 

C(T) and χ⊥(T) (right scale) for.  

Fig. 3. Single-crystal Li2RuO3 (C): The temperature dependence of (a) the magnetic 

susceptibility χ��(T) and χ⊥(T) and 1/Δχ⊥ (right scale) for 1.7 < T <850 K and (b) 

the specific heat C(T) and χ|�(T) and χ⊥(T) (right scale) at low T.  Single-crystal 

Li2RuO3 (P): The temperature dependence of (c) χ��(T) and χ⊥(T) and 1/Δχ⊥ (Inset) 

and (d) χ|�(T) and χ⊥(T) and  dχ⊥/dT (right scale) at low T.   

Fig. 4. The Neèl temperature TN as a function of the bond distance ratio (Ll-Ls)/Ls for 
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all honeycomb ruthenates. Inset: a schematic of the honeycomb lattice featuring Ll 

and Ls.  
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