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Abstract. For those glassformers (especially metallic glasses), which structure may be
presented as a set of linear topological defects embedded into a media with crystalline local
order, we suggest a description of the shear dynamics in terms of kinks motion along the
topological defect lines, as it is customary for crystalline materials. Locally, these defects are
similar to dislocations and disclinations. For the motion of the kink, we write out the Fokker -
Planck equation in a self - consistent potential. The glass transition occurs to be described as
a localization of the kink.

1. Introduction
Near melting, the structure of condensed substance is often being described in terms of local
order and topological defects. This approach arises from the articles [1, 2]. The base suggest of
the approach is that in an overwhelming majority of local clusters of the substance (including first
coordination shell) the local arrangement of the atoms is similar to the corresponding crystal
arrangement, and such clusters form topologically connected area. Clusters, where the local
order differs sharply from the crystalline order, are not too numerous and are organized into
linear defects, which can not be terminated in the bulk of the substance. Locally, these defects are
similar to dislocations and disclinations in crystal. The difference is that in globally disordered
state (glass or liquid), the density of the defects is high enough to allow the disorientation of local
crystalline axis at distances larger than orientational order correlation length. Since the loss of
global orientation order is the main content of melting, than the approach considered implies
melting being described in terms of statistics of topological defects. In two dimensions, the
description of melting in terms of topological defects statistics is rather common approach [3, 4].
For three dimensions, the theory becomes mathematically complicated [5, 6], but still applicable.
Melting occurs to be described as a jump rise of defect density. Recently, this approach was
applied to the liquid - glass transition [7]. It is known, that metals may be transformed into
nano structured (crystalline at nano scale but disordered at larger distances) state by large
plastic deformation [8], i.e. by mechanical rising of topological defects density. This fact may
be considered as a qualitative justification (at least for metals) of the approach considered. For
the metals and alloys, the approach may be treated as a complementary to the traditional one,
based on the formalism of correlation functions (for the example of the last, see [9, 10]).

In present article, we realize the following idea. In crystalline state, the shear deformation is
provided by the motion of topological defects (dislocations). The last is due to the motion of
point objects (kinks) along the defect line [11]. For the substance with crystalline local order, the
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same mechanism may be suggested in liquid and amorphous states also. The difference is that
in the case of high defect density, the dislocation sliding plane curves into a sliding surface, and
the dislocation motion is strongly retarded by the intersections with other defects. Nevertheless,
the local picture of the kink motion is the same, and one can describe the shear relaxation in
that terms.

2. Model of the kink motion.
Consider a certain dislocation and a certain kink moving along it. The kinks motion shifts the
dislocation in its sliding surface, so the excess density of intersections with other defects occurs
during the motion just behind the kink. This excess density disappears, if the kink returns
conversely in a short time. Thus, if the excess intersection lifetime is infinite, the kink moves
in a potential U(x) = u0 | x |, where u0 is the energy of excess intersections per unit length,
and x is a coordinate along the defect line. However, the excess intersection contributes into
the excess energy, so it relaxes in time, and we denote the probability to relax during time t as
m(t). With respect to the motion of the kink, all intersections may be divided into ”excess” and
”relaxed”. Let us denote the probability of kink to have the coordinate below x as F (x, t), and
the kink probability density as f(x, t) = F ′(x, t). Here and below, we’ll denote the derivative
with respect to x by the bar, and the time derivative by the dot. It can be shown that

U ′(x, t) = (1 − 2F (x, t))u0(ωe − ωr), (1)

where ωe, ωr are the probabilities of the intersections at (x, t) to be ”excess” or ”relaxed”
respectively. Let us write out the equation on ωe,r. Within a small Δt, the probability of
relaxed state at point x changes as follows:

ωr = ωe(x, t)m(Δt) + ωr(x, t)(1 − f(x, t)Δt). (2)

Here, the first term corresponds to the relaxation from the excess to relaxed state, and the
second describes possible excitation from relaxed state to the excess one by the kink motion
across point x during the time interval t ÷ t + Δt. The obvious condition ωe + ωr = 1 gives
closed equation

ω̇e + ωe(m0 + f(x, t)) = f(x, t) , m0 = ṁ(t) |t→0 . (3)

This equation may be easily solved

ωe = e−m0t−G
∫ t

0
f(x, τ)em0τ+G(x,τ)dτ, G(x, t) =

∫
f(x, t)dt (4)

The probability density function f(x, t) obeys the Fokker - Planck equation [12]

T

γ
f ′′ +

1
γ

(U ′f)′ = ḟ , (5)

where T is the temperature in energy units, and γ - effective friction coefficient. Relations (1,4,5)
together with the condition ωe +ωr = 1 form a closed set of equations on the kink’s distribution
function F (x, t). The initial condition is that at t = 0 the kink is at point x = 0. Below, we’ll
consider its stationary solution.

3. Stationary solution
For stationary solution, f(x, t) = f(x), ω̇e = 0, so that from (3) one gets

ωe =
f(x)

m0 + f(x)
. (6)
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Equation (5) may be once integrated with respect to x:

T

γ
F ′′ +

u0

γ
(1 − 2F )F ′F ′ − m0

F ′ + m0
= 0. (7)

Using standard substitution F ′′ = F ′dF ′/dF , one arrives to the equation

F ′
[
dF ′

dF
+

u0

T
(1 − 2F )

F ′ − m0

F ′ + m0

]
= 0, (8)

which has trivial solution F ′ = 0 = f(x). This solution corresponds to the vanishing
homogeneous distribution of the kink along the defect line. Besides, there is nontrivial solution

F ′ + 2m0 ln
(

m0 − F ′

m0

)
=

u0

T
(F 2 − F ). (9)

Here, we choose the integration constant as to fulfil the condition F ′ = 0 when F = 0 (x → −∞)
or F = 1 (x → +∞). Let us analyze the solution of (9) at small x, where the F (x) may be
expanded into power series:

F =
1
2

+ αx − βx3. (10)

Using (9), one gets equations on the α, β coefficients:

α +
u0

4T
= −2m0 ln

(
1 − α

m0

)
, β =

α2u0(m0 − α)
3T (m0 + α)

. (11)

At large x, one can use the smallness of the F ′. In that case, linear approximation of the
logarithm in (9) gives

F =
1
2

+
1
2

tanh
(

u0

2T
x

)
. (12)

Note, that nontrivial solution exists only if smooth stitching of approximations (11) and (12) at
some intermediate x is possible. In the first case, the probability density function f(x) = F ′(x)
is a parabolic cupola which width is

Δx1 �
√

2T (m0 + α)
αu0(m0 − α)

. (13)

In the second case, the probability density is described by the exponential cupola

f(x) =
u0

4T
cosh−2 u0x

2T
(14)

with the width
Δx2 � 4T/u0. (15)

The smooth stitching is possible if Δx1 ≥ Δx2. Equations (11,13,15) give the parameters values,
which correspond to the appearance of the nontrivial solution:

u0

Tm0
= z,

α

m0
= y, (16)

where z, y are the solutions of the algebraic system{
8y(1 − y)/(1 + y) = z

y + z/4 = −2/ ln(1 − y) (17)
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4. Conclusion
Our reasoning may be supplemented by one natural consideration. The kink motion causes
shifting of the dislocation in its sliding surface. Thus, the intersection with another defect,
arising due to this shift (excess intersection), looks as a local shift of the line of this another
defect according to the Burgers vector of initial dislocation, i.e. it is a kink on the another
defect line. Thus, the process of its relaxation is a diffusion of this kink out from the place of
intersection, which is the Poison random process

m(t) = 1 − e−λt, (18)

where λ is the probability of the kink to move out from the initial position per unit time, which
is the half of the diffusion coefficient in the Fokker - Planck equation (5):λ = 2T/γ. Thus, one
gets

m0 = λ = 2T/γ. (19)

Relations (16), which correspond to the point of appearance (or disappearance) of non - trivial
solution, give

Tc =
√

u0γ

2z
. (20)

Above Tc, the kink moves along the defect line fluently, and shear deformations may relax
(liquid). Below Tc, the kink is localized at the length l � 4T/u0 counted along the defect, or at
the three dimensional area of size

rl ∼ ld ∼ T d, (21)

where d is the fractal dimensionality of the defect line (glass with finite shear rigidity). To
produce plastic flow, one has to provide relative shear deformation ε ∼ 1/rl ∼ T−d. Measuring
temperature dependence of plastic deformation, one gets fractal dimensionality of defects.

Tc in (20), is the temperature of glass instability. The effective friction coefficient γ is
proportional to the viscosity, while the density of intersections u0 is proportional to the activation
energy of viscose flow. Thus, the viscosimetry experiment in the liquid state gives the Tc.

Thus, we suggested relatively simple approach which allows one to get an interesting results
concerning shear dynamics of glassformers.
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