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ABSTRACT: A transition metal-free process has been
reported for 1,2-dithiocyanation of alkynes in the presence
of sodium persulfate and potassium thiocyanate reagent
combination in a short reaction time under ambient air.
Styrene derivatives are equally applicable under the same
reaction conditions. Monothiocyanated vinyl derivatives were
also synthesized from 2-ethynylpyridine and dimethyl
acetylene dicarboxylate. The reaction proceeds by the
radical/polar pathway as evidenced from our experiments
and literature. After removal of the solvent from the reaction
mixture by evaporation, the crude product was purified without conventional workup.

■ INTRODUCTION

Difunctionalization of organic substrates is a powerful tool in
modern organic synthesis, which mainly involves alkynes as
well as alkenes in organic synthesis.1−13 It has been widely
studied and utilized in various techniques for functional group
interconversions.14−17 Difunctionalization of alkenes is an
attractive method for introducing a set of groups during a one-
pot reaction process.18,19 Dithiocyanation of alkynes and
alkenes is meaningful as they show fungicidal activity.20 In
addition, different sulfur derivatives can be synthesized from
the thiocyanates.21−24 These can be easily converted to
different compounds such as sulfides, disulfides, thioesters,
thiols, thiocarbamates, and many sulfur heterocycles.25−34

Therefore, efficient incorporation of the thiocyano group into
organic molecules has drawn much attention.
Few methods have been developed for the dithiocyanation

of alkenes using different catalytic systems such as combination
of PhI(OAc)2/trialkylsilyl cyanide or potassium thiocyanate
(KSCN) reagent,35,36 cerium(IV) ammonium nitrate-mediated
thiocyanation of styrenes,37 FeCl3,

38 and recently Cu-catalyzed
dithiocyanation in the presence of NH4SCN and selectfluor
reagent combination.39 However, to the best of our knowledge,
dithiocyanation of alkynes is very rare. Only one method has
been reported previously.40 It is worthy to mention that most
of the previous methods suffer from at least one of the
following general disadvantages such as low-to-moderate
yields, lengthy reaction time, vigorous conditions, use of
toxic as well as expensive metals, and complex reagent

combination. It should be mentioned that none of these
methods are applicable for dithiocyanation of both alkynes and
alkenes under fully similar conditions. Hence, the development
of a new and common reagent system which is useful for
synthesizing dithiocyanate derivatives from alkynes as well as
alkenes is highly desirable. Therefore, in continuation of our
research,41−47 herein we are pleased to report a simple and
convenient process for the dithiocyanation of alkynes as well as
alkenes in a short reaction time in the presence of potassium
thiocyanate and sodium persulfate reagent combination
(Scheme 1).
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■ RESULTS AND DISCUSSION
This study was initiated by observing the reaction of 1 equiv of
phenyl acetylene 1a and 2 equiv of KSCN (2) employing 1
equiv of sodium persulfate (Na2S2O8) as the oxidant in 1,2-
dichloroethane (1,2-DCE) solvent at room temperature under
ambient air for 30 min. Gratifyingly, the desired dithiocyanated
coupling product, (1,2-dithiocyanatovinyl)benzene (3a), was
obtained in a 55% yield after 30 min (Table 1, entry 1). This

result encouraged us to optimize the reaction in different
conditions, and the results are summarized in Table 1. To
interpret the solvent effects, the reaction was examined in
various solvents (Table 1, entries 2−10). To our pleasure, the
desired product was isolated in an excellent yield (90%) in
toluene after 30 min (Table 1, entry 7). The yield was not
improved significantly by increasing the reaction time. Other
common solvents such as dichloromethane (DCM), tetrahy-
drofuran (THF), 1,4-dioxane, CH3CN, dimethylformamide
(DMF), dimethyl sulfoxide (DMSO), poly(ethylene glycol)
(PEG)-400, and water were not so effective. Other oxidants
such as ammonium persulfate [(NH4)2S2O8], potassium
persulfate (K2S2O8), and di-tert-butyl peroxide (DTBP) were
also investigated. These were not so effective for this
transformation (Table 1, entries 11−13). Ammonium
thiocyanate (NH4SCN), as the thiocyanate source, is also
not effective for this transformation (Table 1, entry 14). A
higher amount of oxidant loading (2 equiv) did not improve
the yield further (Table 1, entry 15), but on decreasing the
amount of oxidant (0.5 equiv), the yield was decreased
considerably (Table 1, entry 16). In addition, by increasing the
amount of KSCN, the yield was not improved (Table 1, entry

17). The reaction did not proceed at all in the absence of any
oxidant (Table 1, entry 18) as well as under neat condition
(Table 1, entry 19). Therefore, on the basis of the series of
experiments (Table 1, entries 1−19), we considered the
optimized reaction conditions by using 2 equiv of KSCN and 1
equiv of Na2S2O8 in toluene for 30 min at room temperature
under ambient air (Table 1, entry 7).
Considering the optimization of the reaction conditions, we

examined the general applicability by increasing the substrate
scope (Scheme 2). A series of 1,2-dithiocyanated alkenes were

obtained in good to excellent yields under the present reaction
conditions (3a−3s). Phenyl acetylenes with electron-donating
substituents on the benzene ring (such as −Me, tert-butyl, and
−OMe) afforded the corresponding 1,2-dithiocyanated alkenes
in excellent yields (3b, 3c, 3d, and 3e). Electron-withdrawing
substituents on the benzene ring of the phenyl acetylene
moiety (such as −F and −NO2) efficiently reacted with KSCN
to produce the respective 1,2-dithiocyanated alkene derivatives
(3f, 3g, and 3h). Carbonyl functionality is also well tolerated to
afford the desired product in good yield (3i). Heteroaryl-
substituted terminal alkyne (such as 3-ethynylthiophene 1j)
also reacted smoothly under the optimized reaction conditions
(3j). In addition, aliphatic terminal alkynes were also found to
afford the desired products in high yields (3k−3n). Apart from

Table 1. Optimization of the Reaction Conditionsa

entry
source of SCN

(equiv) oxidant (equiv)
solvent
(2 mL)

yields
(%)b

1 KSCN (2) Na2S2O8 (1) 1,2-DCE 55
2 KSCN (2) Na2S2O8 (1) DCM 85
3 KSCN (2) Na2S2O8 (1) THF 30
4 KSCN (2) Na2S2O8 (1) 1,4-dioxane <10
5 KSCN (2) Na2S2O8 (1) CH3CN 20
6 KSCN (2) Na2S2O8 (1) DMF <10
7 KSCN (2) Na2S2O8 (1) toluene 90, 92c

8 KSCN (2) Na2S2O8 (1) DMSO ND
9 KSCN (2) Na2S2O8 (1) PEG-400 ND
10 KSCN (2) Na2S2O8 (1) H2O ND
11 KSCN (2) (NH4)2S2O8 (1) toluene 60
12 KSCN (2) K2S2O8 (1) toluene 88
13 KSCN (2) DTBP (1) toluene ND
14 NH4SCN (2) Na2S2O8 (1) toluene 70
15 KSCN (2) Na2S2O8 (2) toluene 90
16 KSCN (2) Na2S2O8 (0.5) toluene 48
17 KSCN (4) Na2S2O8 (1) toluene 90
18 KSCN (2) toluene ND
19 KSCN (2) Na2S2O8 (1) neat ND

aReaction conditions: carried out with 1 mmol of 1a and 2 mmol of
SCN source in 2 mL of solvent at room temperature for 30 min. bAll
are isolated yields. cReaction time 12 h.

Scheme 2. Substrate Scope for the 1,2-Dithiocyanation of
Various Alkynesa

aReaction conditions: 1 (1 mmol) and 2 (2 mmol) in the presence of
1 equiv of Na2S2O8 in 2 mL of toluene for 30 min at room
temperature.
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aryl acetylenes, alkenyl acetylene (1m) is also a good substrate
for the reaction. Two oxy-substituted terminal alkynes were
also tested; they also furnished the desired products in
excellent yields (3o and 3p).
It is worthy to mention that the present reaction conditions

are equally effective for internal alkynes. We have examined
three different internal alkynes such as oct-4-yne (1q), prop-1-
yn-1-ylbenzene (1r), and ethyl 3-phenylpropiolate (1s); all of
these afforded the desired products (3q−3s) in excellent
yields. However, 1-ethynylcyclohexan-1-ol (1t) and 1,2-
diphenylethyne (1u) remained unreacted under the present
reaction conditions. During our studies on the substrate scope,
we have selectively found the 1,2-dithocyanation product. Only
the formation of monothiocyanated alkene derivatives (4a and
4b) has been observed in cases of 2-ethynylpyridine and
dimethyl acetylene dicarboxylate in 88 and 89% yields,
respectively (Scheme 3).

To explore the scope of the present methodology, we used
styrene derivatives to synthesize diverse vicinal dithiocyanate
derivatives (Scheme 4). Styrenes 5 with different substituents
on the aromatic ring, including electron-donating and electron-
withdrawing groups, can be transformed into the correspond-
ing products 6 in good yields. Styrene having a −Me
substituent on the benzene ring reacted with KSCN efficiently
to afford the product with good yield (6b). Halo-substituted

styrenes were well tolerated in the dithiocyanation reaction (6c
and 6d). In addition, we are pleased to notice that 1,1-
diphenylethylene (DPE) gave the desired product (6e) with
good yields under the stated reaction conditions. To make the
reaction more greener aspect, we tried the reaction for both
alkyne and alkene by light in the presence of a photocatalyst
instead of persulfate. The desirable product for alkyne was
found with low yield, whereas for styrene no satisfactory
product has been isolated (see the Supporting Information).
As an application, we observed that this protocol is

extendable for diselenylation of styrenes using KSeCN instead
of KSCN with a combination of similar reagents (Scheme 5).

All these reactions are not sensitive to air and moisture and
were performed under an open atmosphere. The reaction
conditions are mild enough and found no decomposition or
polymerization of the starting materials. We have not observed
any considerable byproducts for all reactions studied. All of the
synthesized compounds have been characterized by spectral
data and the new compounds by spectral and analytical data.
X-ray crystallographic analysis of ethyl (E)-3-phenyl-2,3-
dithiocyanatoacrylate (3s) was performed to confirm the
structure of the product as shown in Figure 1.48 In addition, we

have also carried out correlation spectroscopy and nuclear
Overhauser effect NMR experiment of compound 3c where we
did not find any cross-peak and trans-conformation was
confirmed. For this present reaction, the workup procedure
can be avoided. The solvent (toluene) was evaporated under
rotary evaporator after completion of the reaction, and the
crude reaction mixture was purified by column chromatog-
raphy using silica gel.
To get a better understanding of the mechanism of this

reaction, few control experiments were carried out (Scheme 6).
In the presence of radical scavengers such as (2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO) and butylated hy-
droxytoluene (BHT), no product was obtained, whereas a
trace amount of product was obtained in the presence of 1,4-

Scheme 3. Formation of Monothiocyanated Vinyl
Derivativesa

aReaction conditions: 1 (1 mmol) and 2 (2 mmol) in the presence of
1 equiv of Na2S2O8 in 2 mL of toluene for 30 min at room
temperature.

Scheme 4. Synthesis of Diverse Vicinal Dithiocyanate
Derivatives from Styrenesa

aReaction conditions: 1 mmol of 5 and 2 mmol of 2 in the presence
of 1 equiv of Na2S2O8 in 2 mL of toluene at room temperature for 30
min.

Scheme 5. Diselenylation of Styrenes Using Potassium
Selenocyanatea

aReaction conditions: 5 (1 mmol) and 7 (2 mmol) in the presence of
1 equiv of Na2S2O8 in 2 mL of 1,2-DCE for 3 h at room temperature.

Figure 1. X-ray crystal structure of compound 3s.
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benzoquinone (BQ) and DPE. These results suggest that the
reaction probably proceeds through a radical pathway.
In a mixture (1:1) of phenyl acetylene (1a) and DPE (5e)

with 2 equiv of KSCN when subjected to react under the same
reaction conditions, only the DPE (5e) participated in the
reaction to afford the desired product (6e), whereas
compound 3a was isolated as trace amount (Scheme 7).
Therefore, the reaction is selective and shows the high
reactivity of alkenes than alkynes. In other words, we can say
that here DPE (5e) acts as a radical scavenger, which also
proves that the reaction goes through a radical pathway.
On the basis of the above experimental results and

literature,35−37,49−53 a plausible mechanism is proposed in
Scheme 8. Initially, an electrophilic thiocyanate radical I is
generated by the oxidation of thiocyanate anion by Na2S2O8.
Subsequent radical addition of I to alkyne derivative (1)
produces carbon-centered radical II, which was further
oxidized to the corresponding carbocation III by Na2S2O8.
Then, the nucleophilic reaction of thiocyanate anion (path a)
with the carbocation III forms the desired product 3. Another
pathway is possible (path b), which involves the coupling of
thiocyanate radical with intermediate II to form the desired
product 3.

■ CONCLUSIONS
In summary, we have developed a mild and metal-free method
for the 1,2-dithiocyanation of alkynes in a short reaction time
using the reagent combination of sodium persulfate and
potassium thiocyanate. A variety of 1,2-dithiocyanated alkene
derivatives have been synthesized with broad functionalities in
high yields. The present methodology is also useful for the
dithiocyanation of styrene derivatives to provide a variety of
vicinal dithiocyanate derivatives. We also observed the
formation of monothiocyanated vinyl derivatives in cases of
2-ethynylpyridine and dimethyl acetylenedicarboxylate. The
selectivity of this reaction was also tested by carrying out the
reaction between phenyl acetylene and DPE. We believe that
our present methodology is a meaningful addition over the

existing methods to synthesize important building blocks of
1,2-dithiocyanated alkene and alkane derivatives.

■ EXPERIMENTAL SECTION
General. All substrates and reagents we have used in the

experiment were purchased from commercial sources and used
without any purification. 1H NMR spectra were recorded using
a 400 MHz spectrometer, and CDCl3 was used as the solvent.
Chemical shifts were expressed in parts per million (ppm) (δ)
and coupling constants (J) were given in hertz, whereas the
signals were represented as s (singlet), d (doublet), t (triplet),
m (multiplet), and dd (double doublet). 13C NMR spectra
were recorded at 100 MHz, and 77Se NMR spectra were
recorded at 76 MHz in CDCl3 solution. Chemical shifts as
internal standard were referenced to CDCl3 (δ = 7.26 for 1H
and δ = 77.16 for 13C NMR). Precoated silica gel on an
aluminum foil was used for thin layer chromatography (TLC)
with dried and distilled solvent before use.

General Procedure for the Synthesis of Compounds
3. A mixture of alkyne (1, 1 mmol), KSCN (194 mg, 2 mmol),
and sodium persulfate (238 mg, 1 mmol) was taken in a dry
sealed tube, and 2 mL of toluene was added to this mixture.
The resulting mixture was stirred at room temperature for 30
min. After completion of the reaction (TLC), the crude
product was isolated just by evaporation of the solvent
(toluene) in a rotary evaporator under reduced pressure. No
conventional workup procedure has been followed. The crude
reaction mixture was purified by column chromatography on
silica gel (60−120 mesh) using petroleum ether and ethyl
acetate as eluents.

General Procedure for the Synthesis of Compounds
6. A mixture of alkene (5, 1 mmol), KSCN (194 mg, 2 mmol),
and sodium persulfate (238 mg, 1 mmol) was taken in a dry
sealed tube. Toluene (2 mL) was added to the mixture, and the
resulting mixture was stirred at room temperature for 30 min.
After completion of the reaction (TLC), the solvent (toluene)
was evaporated in a rotary evaporator under reduced pressure,
and the crude reaction mixture was purified by column
chromatography on silica gel (60−120 mesh) using petroleum
ether and ethyl acetate as eluents.

Scheme 6. Control Experimentsa

aReaction conditions: 1a (1 mmol), KSCN (2 mmol), and 3 mmol of
different radical scavengers in the presence of 1 equiv of Na2S2O8 in 2
mL of toluene for 30 min at room temperature.

Scheme 7. Competitive Reaction between Alkynes and Alkenes

Scheme 8. Proposed Reaction Mechanism

ACS Omega Article

DOI: 10.1021/acsomega.8b01762
ACS Omega 2018, 3, 13081−13088

13084

http://dx.doi.org/10.1021/acsomega.8b01762


(E)-(1,2-Dithiocyanatovinyl)benzene (3a).40 Colorless
solid (196 mg, 90%), mp 63−65 °C; 1H NMR (CDCl3, 400
MHz): δ 7.52−7.49 (m, 3H), 7.39−7.36 (m, 2H), 6.81 (s,
1H); 13C NMR (CDCl3, 100 MHz): δ 131.8, 131.4, 129.7,
128.6, 127.5, 117.2, 108.7, 107.9.
(E)-1-(1,2-Dithiocyanatovinyl)-4-methylbenzene (3b).40

Colorless solid (185 mg, 80%), mp 92−94 °C; 1H NMR
(CDCl3, 400 MHz): δ 7.32−7.25 (m, 4H), 6.76 (s, 1H), 2.41
(s, 3H); 13C NMR (CDCl3, 100 MHz): δ 142.1, 131.8, 130.4,
128.9, 128.6, 116.3, 109.0, 108.2, 21.7.
(E)-1-(1,2-Dithiocyanatovinyl)-3-methylbenzene (3c).

Light yellow oil (190 mg, 82%); 1H NMR (CDCl3, 400
MHz): δ 7.40−7.36 (m, 1H), 7.34−7.30 (m, 1H), 7.17−7.15
(m, 2H), 6.78 (s, 1H), 2.41 (s, 3H); 13C NMR (CDCl3, 100
MHz): δ 139.9, 132.3, 131.7, 129.6, 129.0, 125.8, 116.7, 108.9,
108.1, 21.5. Anal. Calcd for C11H8N2S2: C, 56.87; H, 3.47; N,
12.06%. Found: C, 56.77; H, 3.41; N, 12.02%.
(E)-1-(tert-Butyl)-4-(1,2-dithiocyanatovinyl)benzene (3d).

Pale yellow gummy mass (230 mg, 84%); 1H NMR (CDCl3,
400 MHz): δ 7.51−7.47 (m, 2H), 7.31−7.29 (m, 2H), 6.77 (s,
1H), 1.34 (s, 9H): 13C NMR (CDCl3, 100 MHz): δ 155.1,
131.6, 128.8, 128.5, 126.7, 116.3, 109.0, 108.2, 35.2, 31.2. Anal.
Calcd for C14H14N2S2: C, 61.28; H, 5.14; N, 10.21%. Found:
C, 61.20; H, 5.21; N, 10.32%.
(E)-1-(1,2-Dithiocyanatovinyl)-4-methoxybenzene (3e).

Pale yellow gummy mass (203 mg, 82%); 1H NMR (CDCl3,
400 MHz): δ 7.33−7.31 (m, 2H), 7.00−6.98 (m, 2H), 6.71 (s,
1H), 3.86 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ 161.9,
131.8, 130.4, 123.7, 115.6, 115.1, 109.0, 108.2, 55.6. Anal.
Calcd for C11H8N2OS2: C, 53.21; H, 3.25; N, 11.28%. Found:
C, 53.14; H, 3.13; N, 11.20%.
(E)-1-(1,2-Dithiocyanatovinyl)-4-fluorobenzene (3f). Pale

yellow oil (177 mg, 75%); 1H NMR (CDCl3, 400 MHz): δ
7.41−7.38 (m, 2H), 7.24−7.17 (m, 2H), 6.82 (s, 1H); 13C
NMR (CDCl3, 100 MHz): δ 164.2 (d, 1JC−F = 253 Hz), 131.0
(d, 4JC−F = 9 Hz), 130.7, 129.8, 127.9, 117.9, 117.2 (d, 2JC−F =
22 Hz), 108.4, 107.7. Anal. Calcd for C10H5FN2S2: C, 50.83;
H, 2.13; N, 11.86%. Found: C, 50.88; H, 2.06; N, 11.81%.
(E)-1-(1,2-Dithiocyanatovinyl)-3-fluorobenzene (3g). Yel-

low oil (172 mg, 73%); 1H NMR (CDCl3, 400 MHz): δ 7.53−
7.47 (m, 1H), 7.25−7.16 (m, 2H), 7.14−7.10 (m, 1H), 6.88
(s, 1H); 13C NMR (CDCl3, 100 MHz): δ 163.0 (d, 1JC−F =
249 Hz), 133.8, 133.7, 131.7 (d, 4JC−F = 8 Hz), 131.2, 129.8,
126.1, 124.6 (d, 3JC−F = 3 Hz), 119.1, 118.8, 118.6, 115.9 (d,
2JC−F = 23 Hz), 108.3, 107.6. Anal. Calcd for C10H5FN2S2: C,
50.83; H, 2.13; N, 11.86%. Found: C, 50.89; H, 2.04; N,
11.80%.
(E)-1-(1,2-Dithiocyanatovinyl)-4-nitrobenzene (3h). Yel-

low gummy mass (226 mg, 86%); 1H NMR (CDCl3, 400
MHz): δ 8.40−8.36 (m, 2H), 7.64−7.60 (m, 2H), 7.02 (s,
1H); 13C NMR (CDCl3, 100 MHz): δ 138.0, 130.1, 128.4,
125.0, 124.7, 121.5, 107.4, 107.1. Anal. Calcd for
C10H5N3O2S2: C, 45.62; H, 1.91; N, 15.96%. Found: C,
45.54; H, 1.82; N, 15.88%.
(E)-1-(4-(1,2-Dithiocyanatovinyl)phenyl)ethanone (3i).

Pale yellow gummy mass (203 mg, 78%); 1H NMR (CDCl3,
400 MHz): δ 8.09−8.06 (m, 2H), 7.52−7.49 (m, 2H), 6.92 (s,
1H), 2.64 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ 196.8,
139.1, 136.1, 130.4, 129.6, 129.1, 119.5, 108.1, 107.5, 26.8.
Anal. Calcd for C12H8N2OS2: C, 55.37; H, 3.10; N, 10.76%.
Found: C, 55.30; H, 3.02; N, 10.71%.
(E)-3-(1,2-Dithiocyanatovinyl)thiophene (3j). Yellow oil

(181 mg, 81%); 1H NMR (CDCl3, 400 MHz): δ 7.57−7.56

(m, 1H), 7.51−7.49 (m, 1H), 7.22−7.21 (m, 1H), 6.78 (s,
1H); 13C NMR (CDCl3, 100 MHz): δ 132.3, 128.7, 128.4,
126.7, 125.9, 117.3, 108.6, 108.1. Anal. Calcd for C8H4N2S3: C,
42.84; H, 1.80; N, 12.49%. Found: C, 42.74; H, 1.72; N,
12.41%.

(E)-1,2-Dithiocyanatooct-1-ene (3k). Pale yellow oil (196
mg, 87%); 1H NMR (CDCl3, 400 MHz): δ 6.48 (s, 1H), 2.52
(t, J = 7.6 Hz, 2H), 1.61−1.58 (m, 2H), 1.32−1.31 (m, 6H),
0.91−0.88 (m, 3H); 13C NMR (CDCl3, 100 MHz): δ 136.7,
114.3, 108.4, 107.8, 33.1, 31.4, 28.5, 27.4, 22.5, 14.1. Anal.
Calcd for C10H14N2S2: C, 53.06; H, 6.23; N, 12.38%. Found:
C, 53.01; H, 6.16; N, 12.30%.

(E)-(1,2-Dithiocyanatovinyl)cyclopropane (3l). Light yel-
low oil (142 mg, 78%); 1H NMR (CDCl3, 400 MHz): δ 6.58
(d, J = 1.6 Hz, 1H), 1.77−1.71 (m, 1H), 1.11−1.06 (m, 2H),
0.90−0.86 (m, 2H); 13C NMR (CDCl3, 100 MHz): δ 133.8,
117.6, 108.7, 108.4, 14.0, 8.1. Anal. Calcd for C7H6N2S2: C,
46.13; H, 3.32; N, 15.37%. Found: C, 46.07; H, 3.24; N,
15.27%.

(E)-3-(1,2-Dithiocyanatovinyl)cyclohex-1-ene (3m).40 Pale
yellow liquid (168 mg, 76%); 1H NMR (CDCl3, 400 MHz): δ
6.48 (m, 1H), 5.95−5.93 (m, 1H), 2.23−2.17 (m, 4H), 1.78−
1.72 (m, 2H), 1.69−1.64 (m, 2H); 13C NMR (CDCl3, 100
MHz): δ 136.5, 133.8, 131.9, 116.9, 109.4, 108.3, 26.5, 25.6,
22.1, 21.3.

(E)-(3,4-Dithiocyanatobut-3-en-1-yl)benzene (3n). Pale
yellow oil (209 mg, 85%); 1H NMR (CDCl3, 400 MHz): δ
7.27−7.17 (m, 3H), 7.10−7.07 (m, 2H), 6.38 (s, 1H), 2.86−
2.83 (m, 2H), 2.78−2.74 (m, 2H); 13C NMR (CDCl3, 100
MHz): δ 138.2, 134.7, 129.1, 128.9, 128.7, 127.3, 116.7, 108.4,
107.7, 35.2, 33.3. Anal. Calcd for C12H10N2S2: C, 58.51; H,
4.09; N, 11.37%. Found: C, 58.43; H, 4.02; N, 11.31%.

(E)-1-((2,3-Dithiocyanatoallyl)oxy)-4-methylbenzene (3o).
Yellow solid (225 mg, 86%), mp 50−52 °C; 1H NMR (CDCl3,
400 MHz): δ 7.16−7.14 (m, 2H), 6.85−6.82 (m, 2H), 6.80 (s,
1H) 4.86 (d, J = 1.2 Hz, 2H), 2.32 (s, 3H); 13C NMR (CDCl3,
100 MHz): δ 154.5, 132.5, 130.4, 127.2, 120.9, 114.6, 109.2,
107.8, 67.5, 20.5. Anal. Calcd for C12H10N2OS2: C, 54.94; H,
3.84; N, 10.68%. Found: C, 54.83; H, 3.80; N, 10.61%.

(E)-4,5-Dithiocyanatopent-4-en-1-yl benzoate (3p). Pale
yellow oil (267 mg, 88%); 1H NMR (CDCl3, 400 MHz): δ
8.05−8.02 (m, 2H), 7.60−7.56 (m, 1H), 7.47−7.43 (m, 2H),
6.55 (s, 1H), 4.35 (t, J = 6.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H),
2.12−2.09 (m, 2H); 13C NMR (CDCl3, 100 MHz): δ 166.3,
134.8, 133.3, 129.7, 129.6, 128.6, 116.4, 107.9, 107.4, 62.9,
29.8, 26.4. Anal. Calcd for C14H12N2O2S2: C, 55.24; H, 3.97;
N, 9.20%. Found: C, 55.20; H, 3.91; N, 9.12%.

(E)-4,5-Dithiocyanatooct-4-ene (3q). Colorless solid (203
mg, 90%), mp 53−55 °C; 1H NMR (CDCl3, 400 MHz): δ
2.71 (t, J = 7.6 Hz, 4H), 1.71−1.65 (m, 4H), 0.99 (t, J = 7.2
Hz, 6H); 13C NMR (CDCl3, 100 MHz): δ 130.8, 108.4, 37.7,
21.4, 13.4. Anal. Calcd for C10H14N2S2: C, 53.06; H, 6.23; N,
12.38%. Found: C, 53.01; H, 6.29; N, 12.47%.

(E)-(1,2-Dithiocyanatoprop-1-en-1-yl)benzene (3r). Yellow
oil (206 mg, 89%); 1H NMR (CDCl3, 400 MHz): δ 7.50−7.45
(m, 3H), 7.34−7.28 (m, 2H), 2.61 (s, 3H); 13C NMR (CDCl3,
100 MHz): δ 135.0, 130.8, 130.3, 129.5, 129.1, 125.7, 108.6,
108.0, 22.9. Anal. Calcd for C11H8N2S2: C, 56.87; H, 3.47; N,
12.06%. Found: C, 56.77; H, 3.40; N, 12.01%.

(E)-Ethyl 3-Phenyl-2,3-dithiocyanatoacrylate (3s). Color-
less solid (206 mg, 71%), mp 104−106 °C; 1H NMR (CDCl3,
400 MHz): δ 7.51−7.48 (m, 3H), 7.21−7.18 (m, 2H), 4.42−
4.37 (m, 2H), 1.39 (t, J = 7.6 Hz, 3H); 13C NMR (CDCl3, 100
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MHz): δ 163.5, 159.1, 136.1, 131.4, 129.7, 127.4, 113.1, 108.8,
108.7, 64.4, 14.1. Anal. Calcd for C13H10N2O2S2: C, 53.78; H,
3.47; N, 9.65%. Found: C, 53.72; H, 3.40; N, 9.57%.
(E)-2-(2-Thiocyanatovinyl)pyridine (4a). Colorless gummy

mass (142 mg, 88%); 1H NMR (CDCl3, 400 MHz): δ 8.61 (d,
J = 4.8 Hz, 1H), 7.73−7.69 (m, 1H), 7.25−7.23 (m, 1H),
7.20−7.16 (m, 1H), 6.80 (d, J = 9.6 Hz, 1H), 6.69 (d, J = 9.6
Hz, 1H); 13C NMR (CDCl3, 100 MHz): δ 153.9, 147.6, 137.0,
127.0, 123.8, 123.5, 122.2, 115.7. Anal. Calcd for C8H6N2S: C,
59.24; H, 3.73; N, 17.27%. Found: C, 59.18; H, 3.82; N,
17.34%.
Dimethyl 2-Thiocyanatomaleate (4b). Yellow oil (179 mg,

89%); 1H NMR (CDCl3, 400 MHz): δ 6.85 (s, 1H), 3.95 (s,
3H), 3.83 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ 165.0,
161.9, 138.4, 126.2, 108.7, 54.3, 53.1. Anal. Calcd for
C7H7NO4S: C, 41.79; H, 3.51; N, 6.96%. Found: C, 41.70;
H, 3.40; N, 6.87%.
(1,2-Dithiocyanatoethyl)benzene (6a).39 White solid (149

mg, 72%); mp 102−104 °C; 1H NMR (CDCl3, 400 MHz): δ
7.47−7.45 (m, 3H), 7.39−7.36 (m, 2H), 4.67−4.63 (m, 1H),
3.81−3.76 (m, 1H), 3.66−3.60 (m, 1H); 13C NMR (CDCl3,
100 MHz): δ 134.2, 130.5, 129.8, 127.7, 110.3, 109.9, 51.6,
38.3.
1-(1,2-Dithiocyanatoethyl)-4-methylbenzene (6b).38

White solid, (187 mg, 80%), mp 99−101 °C; 1H NMR
(CDCl3, 400 MHz): δ 7.25 (s, 4H), 4.66−4.62 (m, 1H), 3.80−
3.75 (m, 1H), 3.64−3.59 (m, 1H), 2.38 (s, 3H); 13C NMR
(CDCl3, 100 MHz): δ 140.7, 131.0, 130.4, 127.5, 110.4, 110.1,
51.5, 38.3, 21.4.
1-Chloro-4-(1,2-dithiocyanatoethyl)benzene (6c).39 White

solid, (191 mg, 75%), mp 88−90 °C; 1H NMR (CDCl3, 400
MHz): δ 7.45−7.42 (m, 2H), 7.34−7.31 (m, 2H), 4.64−4.60
(m, 1H), 3.78−3.73 (m, 1H), 3.61−3.55 (m, 1H); 13C NMR
(CDCl3, 100 MHz): δ 136.5, 132.8, 130.1, 129.0, 110.1, 109.6,
50.9, 38.0.
1-Bromo-4-(1,2-dithiocyanatoethyl)benzene (6d).39

White solid, (209 mg, 70%), mp 90−92 °C; 1H NMR
(CDCl3, 400 MHz): δ 7.62−7.59 (m, 2H), 7.28−7.25 (m,
2H), 4.62−4.58 (m, 1H), 3.79−3.74 (m, 1H), 3.60−3.54 (m,
1H); 13C NMR (CDCl3, 100 MHz): δ 133.3, 133.1, 129.2,
124.8, 110.0, 109.4, 50.9, 38.0.
(1,2-Dithiocyanatoethane-1,1-diyl)dibenzene (6e). Pale

yellow gummy mass (225 mg, 76%); 1H NMR (CDCl3, 400
MHz): δ 7.45−7.37 (m, 6H), 7.34−7.32 (m, 4H), 4.02 (s,
2H); 13C NMR (CDCl3, 100 MHz): δ 140.1, 129.2, 129.1,
126.2, 111.3, 72.2, 46.7. Anal. Calcd for C16H12N2S2: C, 64.84;
H, 4.08; N, 9.45%. Found: C, 64.72; H, 4.02; N, 9.35%.
General Procedure for the Synthesis of Compounds

8. A mixture of alkene (5, 1 mmol), KSeCN (288 mg, 2
mmol), and sodium persulfate (238 mg, 1 mmol) was taken in
a dry sealed tube. 1,2-DCE (2 mL) was added to the mixture,
and the resulting mixture was stirred at room temperature for 3
h. After completion of the reaction (TLC), the solvent (1,2-
DCE) was evaporated in a rotary evaporator under reduced
pressure, and the crude reaction mixture was purified by
column chromatography on silica gel (60−120 mesh) using
petroleum ether and ethyl acetate as eluents.
(1,2-Diselenocyanatoethyl)benzene (8a). White solid (235

mg, 75%), mp 105−107 °C; 1H NMR (CDCl3, 400 MHz): δ
7.45−7.44 (m, 3H), 7.39−7.37 (m, 2H), 5.01−4.97 (m, 1H),
4.05−4.01 (m, 1H), 3.90−3.84 (m, 1H); 13C NMR (CDCl3,
100 MHz): δ 134.8, 130.4, 129.9, 127.7, 101.2, 100.0, 48.2,
33.9; 77Se NMR (76 MHz, CDCl3): δ 240.4, 240.2. Anal.

Calcd for C10H8N2Se2: C, 38.24; H, 2.57; N, 8.92%. Found: C,
38.14; H, 2.51; N, 8.83%.

1-Bromo-4-(1,2-diselenocyanatoethyl)benzene (8b).
White solid (282 mg, 72%), mp 118−120 °C; 1H NMR
(CDCl3, 400 MHz): δ 7.53−7.49 (m, 2H), 7.22−7.18 (m,
2H), 4.87−4.83 (m, 1H), 3.97−3.93 (m, 1H), 3.75−3.69 (m,
1H); 13C NMR (CDCl3, 100 MHz): δ 133.1, 132.2, 129.2,
124.6, 100.7, 99.8, 47.4, 33.4; 77Se NMR (76 MHz, CDCl3): δ
245.1, 244.8; Anal. Calcd for C10H7BrN2Se2: C, 30.56; H, 1.80;
N, 7.13%. Found: C, 30.48; H, 1.73; N, 7.10%.
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