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Abstract. We derive the static resistivity due to the Bloch domain wall using the
nonequilibrium density operator technique by Zubarev in the ballistic limit of electronic
transport.

An electronic transport in magnets with an inhomogeneous magnetic order is an active
research topic due to promising applications in spintronics. A presence of a domain wall (DW) in
a ferromagnet enables to control a DWmotion by a spin polarized current of conducting electrons
flowing through the domain wall [1]. A feedback effect is a change of transport properties that has
been observed in a number of experiments. The excess resistivity due to DW (DWR) has been a
subject of a number of studies. The most relevant theoretical treatments of DWR are based on
the following concepts. (i) The mixing of spin states due to the magnetization twist in the DW
[2]. The phenomenological spin dependent impurity scattering mixes the two-spin channels. The
extra resistivity arises since the channels exhibit unequal conductivities in a ferromagnet in the
absence of the wall. (ii) A redistribution of the charge carriers between spin-majority and spin
minority channels due to the domain wall scattering [4, 5]. The works perform a diagrammatic
evaluation of the Kubo’s formula over the DW scattering potential. The impurity scattering
is introduced in the unperturbed Green’s functions through two phenomenological parameters,
the momentum scattering times for spin-up and spin-down channels. (iii) A destruction of the
weak localization corrections to conductivity by the domain wall [3]. It was shown that a DW
contributes to the decoherence of electrons, leading to a decrease of the resistance. (iv) Spin
accumulation around the DW which leads to an additional potential drop [6, 7, 8].

In the present paper we propose a microscopic calculation of the Bloch DW resistivity using
the nonequilibrium density operator technique in the ballistic regime of electronic transport,
when the electron mean free path is longer than the system size. The approach takes into
account a domain-wall scattering [type-(ii) theory], but it is valid in the clean limit (the electronic
relaxation time τ → ∞), where the resistivity is dominated by a spin structure. The case has
been previously addressed by using the Mori formula [9].

We use the following model Hamiltonian to describe the system of conduction electrons

Ĥ = −
∑

〈i,j〉,σ
tijc

†
iσcjσ − µ

∑
iσ

c†iσciσ − Jsd
∑
i

Si · si, (1)

where tij is a hopping integral between the nearest neighbour sites, µ is the chemical potential,

c†iσ (ciσ) is an electron creation (annihilation) operator at the site i with spin σ =↑, ↓. The
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conduction electrons interact with the inhomogeneous magnetic texture via the sd exchange
interaction with the coupling strength Jsd > 0, Si = S(cosϕi sin θi, sinϕi sin θi, cos θi) denotes
the localized spin of the texture parametrized by the polar angles θ and φ. The local spin of

conduction electrons si = (1/2)
∑

σσ′ c
†
iσσσσ

′ ciσ′ is treated as a quantum operator, where σ
stands for Pauli matrices.

Since the length scale of the DW is very large compared with the length scale of the electron
(∼ 0.1 nm at the Fermi level), the back reflection of free carriers by the DW can be ignored [10]
and one can use the ”adiabatic frame” approximation to study electron transport in such a slow
varying in space magnetic background [9, 11].

The first step of analysis is to perform a local SU(2) unitary transformation ciσ =∑
σ′(Ûi)σσ′biσ, which removes the inhomogeneity of S

Û−1
i (Si · σ)Ûi = Sσz. (2)

The transformation matrix is given by Ûi = mi · σ with the unit vector

mi = (cosϕi sin
θi
2
, sinϕi sin

θi
2
, cos

θi
2
). (3)

Applying the local unitary rotation to the kinetic part of the Hamiltonian (1) and using the
identity

Û−1
i Ûi+aν = 1 + iaν (Aν(ri) · σ) + o(A2), (4)

where aν is the lattice spacing along the ν axis, and

Aν(ri) = [m(ri)× ∂νm(ri)] (5)

is the non-Abelian gauge field created by the non-uniform magnetic texture (ν = x, y, z), we

obtain the Hamiltonian in the rotated frame as Ĥ = Ĥ0 + Ĥint.
After the Fourier transformations

biσ =
1√
V

∑
k

eikribkσ, Aν(q) =
1

V

∑
ri

eiqriAν(ri), (6)

the first part is given by

Ĥ0 =
∑
kσ

εkσb
†
kσ

bkσ
(7)

with the quasiparticle energies

εkσ = −2
3∑

ν=1

tν cos (kνaν)− σM − µ, (8)

where M = JsdS/2 is half the exchange splitting, and tν is the hopping integral along the ν axis
in the real space.

The interaction part has the form

Ĥint = h̄
∑
ν,α

∑
σσ′

∑
k,k′

Aα
ν (k

′ − k)σα
σσ′ e

i
2
(k′ν−kν)aνvν

(
k′ + k

2

)
b†kσ

b
k′

σ′ , (9)

where the group velocity is

vν(k) =
1

h̄

∂εkσ

∂kν
=

2

h̄
tνaν sin (kνaν) . (10)
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After the rotation the Hamiltonian (1) is transformed to that of electrons uniformly polarized
and interacting with the SU(2) gauge field A localized around the inhomogeneity [9]. The non-
adiabaticity causes a scattering between the spin-up and spin-down channels and plays a role of
spin-dependent scattering potential.

The current operator is

J = e
∑
kσ

v(k)b†kσ
bkσ

, (11)

where e < 0 is the electron charge. Its time derivative is

J̇ =
i

h̄
[Ĥ,J] = ie

∑
α,ν

∑
kσ

∑
k′

σ′

Aα
ν (k

′ − k)σα
σσ′e

i
2
(k′ν−kν)aνvν

(
k′ + k

2

)(
v(k′)− v(k)

)
b†kσ

b
k′

σ′ .

(12)
The dynamical resistivity per volume in isotropic materials obtained within the

nonequilibrium density operator method [12] is given by

ρ(ω) =
3kBT

(J,J)

[
−iω +

〈J̇; J̇〉ω+iε

(J,J) + 〈J̇;J〉ω+iε

]
, (13)

where T is the temperature and kB is he Boltzmann constant. In contrast to Kubo’s formula
for a linear response of isolated systems, Eq.(13) describes a response of open systems that
in contact with a heat bath. What concerns external mechanical perturbations (for instance,
electric or magnetic fields) the both approaches are equivalent. However, the method of the
nonequilibrium density operator is naturally extended to thermal perturbations (f.e., local
fluctuations of temperature or chemical potential) [12].

Provided the adiabatic condition, M/tν � aν/λ0, where λ0 is a scale of magnetic
inhomogeneity, that means a smoothness of a spin texture, the time derivative (12) becomes
a small parameter of the theory. This makes (13) is more convenient to evaluate the resistivity
in comparison with the linear response theory, where an interaction with the gauge field is
treated by using the standard diagrammatic perturbation theory [3].

The resistivity includes the static correlation function of the current operators

(J,J) =
∑

α=x,y,z

1∫
0

dxTr {JαJα (ih̄βx) ρ0} , (14)

where β = 1/(kBT ), ρ0 = exp
(
−βĤ

)
/Tr exp

(
−βĤ

)
is the equilibrium density matrix and

Jα (ih̄βx) = e−βxĤJαe
βxĤ.

The symbol 〈. . .〉 represents the Laplace transform of the time correlation function

〈A;B〉ω+iε =

∫ ∞

0
dt ei(ω+iε)t (A(t), B) , (15)

where A,B mean either J or J̇ operators.
In the following we consider the static resistivity at ω = 0 and focus on spin textures

varying only in one spacial direction, say along the z axis, and uniformly magnetized within
the perpendicular xy plane. Then, Aν(q) → Az(qz). Likewise we assume that electrons move
only along the selected direction with the energy εkzσ = −2tz cos(kzaz) − σM − µ, i.e. the
hopping terms tx, ty are neglected and the factor 3 in Eq.(13) should be omitted.
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Plugging the expression in Eqs.(17,15) we get

〈J̇z; J̇z〉iε = πh̄e2
∑
α1α2

∑
k1σ1

∑
k
′
1σ

′
1

Aα1
z (k

′
1 − k1)A

α2
z (k1 − k

′
1)σ

α1

σ1σ
′
1

σα2

σ
′
1σ1

×v2z

(
k

′
1 + k1
2

)(
vz(k

′
1)− vz(k1)

)2
fk1σ1(1− f

k
′
1σ

′
1
)δ
(
εk1σ1 − ε

k
′
1σ

′
1

)
, (16)

and after some calculations the expression is simplified to be

〈J̇z; J̇z〉iε = 2πh̄e2
∑
kk′

A(−)
z (k

′−k)A(+)
z (k−k

′
)v2z

(
k

′
+ k

2

)(
vz(k

′
)− vz(k)

)2
fk↑(1−fk↑)δ(εk↑−εk′↓),

(17)

where A
(±)
z = Ax

z±iAy
z . As is obvious, the spin flip scattering of conduction electrons is provided

by the transverse components of the gauge field.
The static correlation function is obtained as

(Jz, Jz) = e2
∑
kσ

v2z(k)fkσ (1− fkσ) , (18)

where fkσ = (expβεkσ + 1)−1 is the Fermi distribution function. By the same manner we get
the trivial result 〈J̇z; Jz〉iε = 0.

Replacing in Eqs.(17,18) the sums over k by the appropriate integrals
∑

k → az/(2π)
∫
BZ dk

and carrying out straightforward calculations we get the eventual result for the dc resistivity
per volume

ρ =
h̄kBTM

2

2e2a2zt
3
z

K1

K2
2

. (19)

Here we introduce the dimensionless quantities determined as

K1 =
az
2π

∑
σ

π/az∫
kmin

dk
A(k − σk0) cos

2 ({kaz + σk0az} /2)[
1− {M/tz + cos (kaz)}2

]1/2 fk↑(1− fk↑), (20)

K2 =
az
2π

∑
σ

π/az∫
−π/az

dk sin2 (kaz) fkσ(1− fkσ), (21)

where k0az = cos−1 [M/tz + cos(kaz)], kminaz = cos−1 [1−M/tz], and

A(q) = a2z

[
A(+)

z (q)A(−)
z (−q) +A(+)

z (−q)A(−)
z (q)

]
. (22)

The explicit form of A(q) depends on a spin configuration. In the case of the Bloch domain
wall, ϕ(z) = 2 tan−1 ez/λ and θ = π/2, where λ is the thickness of the DW, it is given by

A(q) = 2 (πqλ)2
cosh(πqλ)

sinh2(πqλ)
. (23)

The last result is derived by using the vector gauge field created by the Bloch DW

Az(z) =
1

2λ

(
sinh(z/λ)

cosh2(z/λ)
,− 1

cosh2(z/λ)
,

1

cosh(z/λ)

)
. (24)
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Figure 1. The static DW resistivity (in arb. units) at different domain wall thicknesses (λ
varies from 10 till 40 with the step 10) as a function of the electronic concentration n (left
panel). Dependence of ρ on the DW thickness for the concentrations n = 0.5 (or 1.5) and n = 1
(right panel). The parameters are chosen as M/tz = 0.2, kBT/tz = 0.1 at tz = 1.0.

The answer for the resistivity becomes transparent at zero temperature

ρ =
h̄πM2

e2a2zt
2
z

∑
σ A(kF↑ − σkF↓) cos

2 ([kF↑ + σkF↓]az/2)

| sin(kF↓az)|| sin(kF↑az)| (
∑

σ | sin(kFσaz)|)2
, (25)

where kFσ is the Fermi momentum of the polarized electrons, i.e. the DW gauge field supports
the spin-flip scattering of electrons at the Fermi level. We pay attention that spin flip processes
without momentum transfer are responsible for an emergence of the spin-trasfer torque from
spins of itinerant electrons to local moments [11] whereas spin flip processes with momentum
transfer results in the resistivity due to the DW.

The finite temperature resistivity is plotted in Fig.1 as a function of the electronic
concentration per site n and the DW thickness λ. To obtain the dependencies we calculate
the chemical potential from the condition

∑
kσ fkσ = n, where 0 ≤ n ≤ 2.

As a summary, by using the nonequilibrium density operator technique we have calculated
the static domain-wall resistivity of a Bloch wall situated in a wire of quasi-one-dimensional
geometry when the current flows perpendicularly to the wall plane.
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