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Abstract. An analytical solution to the problem of the determination of contact stress in planar plastic deformation of ideal 
rigid-plastic material is obtained in compliance with Coulomb's friction law when using the von Mises yield criteria. The 
dimensions of slip regions are identified, an improved method of constructing diagrams of contact stresses is elaborated and 
technological loads are determined. A comparison with known theoretical and experimental data is carried out. 

The magnitude and nature of the application of technological loads on the operating members of metal forming 
machines, as well as the quality of the products, is largely determined by the distribution of stresses on the contact 
surface of the deformation region. It has been established experimentally that in many metal-forming processes this 
surface has slip regions, within which the contact stresses are subject to Coulomb's friction law. The existing 
dependencies for determining the contact stresses in these sections are identified with the use of the approximate 
yield criterion, recorded in the principal stresses [1]. Up until the present time, there has been no evaluation of this 
approximation error in the literature. 

An analytical solution to the problem of the determination of contact stress in planar plastic deformation of ideal 
rigid-plastic material is obtained in compliance with Coulomb's friction law when using the von Mises yield criteria 
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where σx and σy are normal stresses, τ is shear stress, τs is yield stress with pure shear. 
The solutions allow an estimation of the error when using the approximate condition of plasticity and the 

development of recommendations regarding the improvement of the procedure for calculating technological loads in 
metal forming processes. 

On the basis of Prandtl's solution [1] for compression of strips at a constant force of contact friction, we assume 
that the slip portion shear stresses are linearly distributed according to the thickness of the strip. 

 
  (2) 

 
where f is the coefficient of friction, h is half the thickness of the strip, p = |σy|/Τs – relatively normal contact 
stresses. 

Using Coulomb's Friction Law, it is ascertained that the distribution of normal stresses on the contact surface in a 
rectangular coordinate system is assigned by the expression [2]  

 
  (3) 

 

Mechanics, Resource and Diagnostics of Materials and Structures (MRDMS-2016)
AIP Conf. Proc. 1785, 040005-1–040005-4; doi: 10.1063/1.4967062

Published by AIP Publishing. 978-0-7354-1447-1/$30.00

040005-1



where x stands for the coordinates of the contact surface; C1 is the arbitrary constant derived from the boundary 
conditions. 

Locating the origin of the coordinates at the end of the strip, we obtain the expression for C1 
 

 

 
where p0 denotes the relative normal stresses at the end of the strip. 

To determine p0, with the condition of the lack of normal force at the end, the following is used: 
 

 
h
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.0σ  (4) 

 
From the equilibrium equation of the planar deformation problem 

  
in view of Eq. (2), a dependence was obtained to determine σy at the end section: 
 

  (5) 
 
where C2 is an arbitrary constant; u=hdp/dx when x = 0. 

The value of u was determined by differentiating with respect to x the right and left parts of Eq. (3), using the 
notation t= p0f , 

 

 

 
Expressing σx from the yield condition (1), Eq. (4) was substituted into the equation taking into account (5), with 

the following written after transformations: 
 

 
 
Substituting y = h, σy= -p0/τs and C2 into equation (5), the following transcendental equation was obtained for p0: 
 

  (6) 
 
From this equation in particular, it follows that the maximum possible value of the friction coefficient fmax = 2/π 

corresponds to t =1 and p0 = π/2. In this case, the width of the slip zone and the derivative dp/dx become zero. The 
results of calculating p0 by equation (6) with an error of no more than 0.5 % are approximated with the expression 

 
 

 
The maximum possible width of the slip zone lc is derived from equation (3) when pf =1,  
 

  (7) 
 
The results of calculating lc are represented by curve 1 in Fig. 1. Here, curve 2 is adduced, obtained using an 

engineering approach. As follows from a comparison of these curves, the use of the approximate yield criterion at 
f>0.2 leads to a significant reduction in the width of the slip zone.  
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In [2] it is shown that, in the presence on the contact surface of the deformation region of the braking zone, the 
friction index μ = 1 and the width of the dead zone lz= 0.72h. In the case of two-zone diagrams in the absence of 
inhibition zones, the contact shear stresses do not achieve the values of τs; moreover, with a decrease in the friction 
index μ, the width of the dead zone increases. Figure 2 presents a graph showing the μ dependence of lz plotted by 
the method discussed in [2]. With a margin of error no more than 5 %, the dependency is approximated by the 
following functions: 

 
  when  and   when . (8) 

 

 
FIGURE 1. The influence of the friction coefficient f on the slip zone width 

 
The minimum strip width at which the retardation zone appears in the diagram of contact stresses is denoted by 

ac. Let us express ac through lc and lz when μ=1 as 
 

 
 

 

FIGURE 2. Influence of the friction index μ on the width of the dead zone 
 
For a two-zone diagram when a< aк, the pressure p2 at the boundary of the slip zones and the dead zones is 

related to the strip width a by Eq. (3), which, following the substitution x = a – lz and the transformations, can be 
represented as 

 
  (9) 

 
Bearing in mind the proportionality of shear and normal contact stresses in the slip zone, we write p2=μ/f.  

Solving equations (8) and (9), we define the width of the dead zone lz for two-zone diagrams. Figure 3 shows the 
two-and three-zone diagrams of normal contact stresses plotted when f=0.3 by the proposed method (curve1) and 
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obtained by means of the engineering method (curve 2). A comparison of the platen forces calculated by these 
methods reveals that, when a/h>2, the engineering method gives a larger value of the design load; moreover, the 
difference increases with an increase in a/h. Thus, when f=0.3 and a/h=5, it reaches 30 %.  

In the case of a cylindrical coordinate system, when the plastic flow of the material in the wedge-like cavity has 
a central angle 2α, the distribution of normal stresses on the contact surface is described by the relation [3, 4] 

 

 2)(1 pf  (10) 

where the index i can assume one of the following two values: i=1 for the thin end of the wedge and i=2 for the thick 
one; gi is the coefficient of the direction of the material flow, g1=1, g2= -1, h is the current height of the strip; hi – the 
height of the end at which boundary conditions are specified; δ=f/α; a1i =(gi – 4 f α)/(1+4α2); a2i =2(f gi + α)/(1+4α2); 
C1i is the arbitrary constant determined by the boundary conditions at the ends. 

The formulas for determining the width of the slip portion when prestressing the wedge-shaped stock material, 
obtained by analogy with the prestressing of the rectangular strip from the condition pf =1, have the form  

 

 

where λi = exp(0.5πa2i + C1i)/δ. 

 
FIGURE 3. Diagrams of normal contact stress (a – two-zone; b – three-zone) 

 
We took the designation x = ln (h/hi) and differentiated the left and right sides of the equation by x (10). As a 

result, we established that, at the end of the slip portion, when pf =1, the derivative dp/dx becomes zero. 
The proposed method for calculating contact stress for slip zones forms a basis for the specification of the 

calculated values of technological loads in processes of upsetting, drawing and rolling of strips. In the latter case, it 
also permits a more reliable determination of the position of the neutral section of the deformation zone. 

CONCLUSIONS 

An analytical solution for contact stress in compliance with Coulomb's friction law in planar plastic deformation 
of ideal rigid-plastic material has been obtained. The principal feature of these solutions is that, by using Coulomb's 
law, together with the exact von Mises yield criterion condition at the boundary slip and retardation zones, dp/dx 
becomes zero. The substitution of an approximate criterion for the precise yield criterion when f > 0.2 leads to a  
2–3 times decrease in the width of the slip zone, and a 20–30 % increase in the estimated technological load. The 
results can be used for improving the method for calculating technological loading in metal forming processes. 
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