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Abstract. We analyze the possibility of Berezinskii-Kosterlitz-Thouless (BKT) transition in
XY -model with in-plane Dzyaloshinskii-Moriya (DM) interaction. It is demonstrated that under
standard duality transformation of XY -model into the model of two-dimensional Coulomb gas
of magnetic vortices, DM interaction is mapped to the effective electric field perpendicular to
the original DM vector. Since the electrostatic energy in the constant electric field becomes
dominating over the logarithmic Coulomb attraction at sufficiently large length scales, BKT
transition is ruled out by the presence of DM interaction. This behavior is confirmed in the
renormalization group analysis, which shows that for finite effective electric field the system
always flows towards the high temperature phase.

1. Introduction
The possibility of topological phase transitions in two-dimensional (2D) systems was first
anticipated independently by Berezinskii [1], Kosterlitz and Thouless [2]. Since that time, this
concept found numerous applications in different fields of condensed matter physics including
hydrodynamics, superconductors, and magnetic systems [3]. A classical Berezinskii-Kosterlitz-
Thouless (BKT) scenario states that there exists a certain transition temperature such as
that below this temperature the topological defects – vortices are bound and hidden from
observation, while above it free defects can proliferate into the system. This transition is
accompanied by characteristic features in macroscopic properties like, for example, in current-
voltage characteristics of semiconductors [3].

During the last decade, a considerable progress has been made in physics of chiral magnets
where the existence of asymmetric Dzyaloshinskii-Moriya (DM) exchange interaction leads to
a rich variety of magnetic phases (see e. g. [4] and references therein). In monoaxial chiral
magnets, an important shift was marked recently by experimental discovery of chiral soliton
lattice structure [5] originally predicted by Dzyaloshinskii [6]. With thin films of chiral magnets
becoming available, realization of BKT scenario in such materials is an intriguing question.

In this paper we consider BKT transition in 2D monoaxial chiral magnet by mapping the
correspondent XY -model into 2D Coulomb gas of magnetic vortices. We found that under such
transformation in-plane DM interaction is mapped into an effective electric field in the direction
perpendicular to DM vector. Interestingly, similar result was obtained in 2D semiconductors
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where applied current density is mapped into topological electric field [7]. Note that locked-
unlocked transition in the sine-Gordon model, where the misfit parameter plays the role of
electric field in the equivalent Coulomb gas model, was also studied in [8].

Our discussion goes along the following line. First, we consider general formulation of the
model. After that, the model is subjected to the duality transformation, and for the resulting
effective model the renormalization group (RG) equations are derived. Conclusions based on
numerical solution of the RG equations are given in the last part. For completeness, some
technical details are specified in Appendices.

2. Formulation
We consider 2D chiral helimagnet withing the framework of XY -model on a square lattice with
the Hamiltonian given by

H = −J
∑
〈ij〉
Si · Sj −D ·

∑
〈ij〉
Si × Sj − H̃x

∑
i

Six, (1)

where J > 0 is the ferromagnetic exchange constant, D = Dez is DM vector taken along the
z-axis, and H̃x is the magnetic field applied along the x-direction, see Fig. 1. All the classical
spin variables Si are confined in the basal xy-plane and parametrized as Si = S(cos θi, sin θi, 0),
where 0 ≤ θi < 2π is the polar angle at the site i. Angular brackets denote summation over the
nearest neighboring sites.

Figure 1. Schematic picture of the
monoaxial 2D chiral helimagnet. The
classical spins Si rotate in the basal
xy-plane, the DM vector is along the
z-axis, and in-plane magnetic field H̃
is applied along the x-direction.

The thermodynamic properties of the model with the Hamiltonian in (1) are described by
the partition function

Z =
∫ ∏

i

dθi exp

βJ̃∑
〈ij〉

cos (θi − θj − αij) + βh
∑
i

cos θi

 , (2)

where β = (kBT )−1 is the inverse temperature, J̃ = S2√J2 +D2 is the effective exchange
parameter, h = H̃xS, and αij = tan−1(D/J) for the nearest neighbor ij-bond along the z-
direction and zero otherwise.

2.1. Effective model
In the low temperature limit, the spin-wave contribution to the partition function (2) can be
integrated out using the duality mapping technique [9]. The essential steps of the duality
transformation are summarized in Appendix A. The resulting effective model takes into account
vortex configurations where θi field, while still being slowly varying form site to site over a closed
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loop, acquires total contribution proportional to the multiply of 2π. After the transformation
partition function takes the form

Z ∝
∑
{lµ(r)}

exp
[
−
∑
rµ

(
l2µ(r)
2βJ̃

+ iαµlµ(r)
)]

×
∏
r

{ ∞∑
κ=−∞

Iκ(βh)δ
[∑
µ

(lµ(r)− lµ(r − aµ))− κ(r)
]}

, (3)

where a particular configuration is expressed by an integer vector field lµ(r) defined on the bond
between two lattice sites with radius vectors r and r + aµ where aµ (µ = y, z) is the lattice
vector, and αµ = αδµz with α = tan−1(D/J). The effect of the magnetic field h is to generate
magnetic charges κ(r) at the center of each lattice cell with the amplitudes of such contributions
proportional to the modified Bessel functions Iκ(βh). The total summation is over all possible
configurations with lµ(r) running form −∞ to ∞ on each bond.

The physical meaning of the constraint imposed by δ-function in equation (3) can be
elucidated through the splitting of lµ(r) into the longitudinal and transverse parts [10]

lµ(r) = m(r)−m(r + aµ) + σ(r)− σ(r + aµ) + εµν [n(r)− n(r − aν)] , (4)

where m(r) and n(r) are integers, |σ(r)| < 1 and εµν denotes the second rank Levi-Civita tensor.
The longitudinal part satisfies lattice form of the Poisson equation∑

µ

[2m(r) + 2σ(r)−m(r + aµ)− σ(r + aµ)−m(r − aµ)− σ(r − aµ)] = κ(r), (5)

while the transverse part is a pure rotation over the unit cell with zero lattice divergence∑
µ

εµν [n(r)− n(r − aν)] = 0. (6)

By substituting (4) in (3) and applying the Poisson formula to the summation over n(r), we
obtain

Z ∝
∑
{κ(r)}

∑
{q(r)}

∫ ∏
r

ϕ(r)Iκ(r)(βh)

× exp

−
∑
rµ


(
∆̂µϕ(r)

)2

2βJ̃
+ iαµ∆̂µϕ(r)

+ 2πi
∑
r

q(r)ϕ(r)

 , (7)

where

∆̂µϕ(r) = ϕ(r + aµ)− ϕ(r) + εµν [m(r + aν) + σ(r + aν)−m(r)− σ(r)] . (8)

In what follows, we only consider the case of vanishing magnetic fields, since in this paper we
are mainly focused on the effect of DM interaction. The model that includes magnetic charges
will be analyzed in further publications. In the βh → 0 limit, Iκ(βh) is replaced by δκ0, and
equation (5) has a trivial solution m(r) + σ(r) = 0. Taking into account that αµ = αδµz
and making the shift of variables ϕ(r) → ϕ(r) + iαβJ̃y, we obtain an effective model of a 2D
Coulomb gas of magnetic vortices with integer charges q(r) in the external electric field along
the y-axis proportional to the strength of DM interaction
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Zeff ∝
∑
{q(r)}

exp
{
−2π2βJ̃

∑
rr′

q(r)G(r − r′)q(r′) + 2παβJ̃
∑
r

y q(r)
}
, (9)

where
G(r − r′) =

∫
d2k

(2π)2
eik·(r−r

′)

4− 2 cos kx − 2 cos ky
≈ − 1

2π log |r − r′|+G(0), (10)

is 2D Coulomb potential, and G(0) contains the divergent part of the interaction potential that
ensures ’electroneutrality’ of the system (hereafter we take the lattice constant a = 1).

Equation (9) is the starting point for the RG analysis [11, 12]. It can be rewritten in a more
convenient form [9, 11]

Zeff ∝
∑
{q(r)}

exp

2πK
∑
r 6=r′

q(r) log |r − r′|q(r′)− 2π
∑
r

εy(r) q(r)

 y∑r
q2(r)

0 , (11)

where K = βJ̃ , ε(r) = −αβJ̃r, and y0 = exp(−π2βJ̃/2) is so called fugacity of the Coulomb
gas. Since we consider the case βJ̃ � 1, all the contribution with large |q(r)| are exponentially
small, and we can restrict the summation in (11) to q(r) = 0,±1.

2.2. RG equations
The partition function in equation (11) can be expanded in terms of the total number of vortex
pairs N = 1

2
∑
r q

2(r)

Zeff =
∞∑
N=0

y2N
0

(N !)2

∫ 2N∏
i=1

d2si exp

2πK
∑
i<j

q(si)q(sj) log |si − sj | − 2π
∑
i

εy(si)q(si)

 , (12)

where we take heed of |q(r)| = 0, 1. The factor (N !)2 arises from independent permutations
of all the vortices and antivortices. In the lowest order in y0, the system contains only one
vortex-antivortex pair with ±1 charges at the positions s and s′

Z(1)
eff = 1 + y2

0

∫
d2s

∫
d2s′ exp

[
−2πK log |s− s′| − 2πεy(s− s′)

]
+O(y4

0). (13)

In order to derive RG equations for the model parameters, we calculate effective interaction
energy for the pair of ±1 external charges, placed at the positions r and r′, which includes the
screening effects from the internal charges at s and s′ [11]. In the lowest order expansion, the
effective interaction reads

eSeff = 1
Z(1)

eff

[
1 + y2

0

∫
d2s

∫
d2s′eSint(r,r′;s,s′)

]
+O(y4

0), (14)

where

Sint(r, r′; s, s′) = −2πK
(
log |r − r′|+ log |s− s′|+ log |r − s′|+ log |r′ − s|

− log |r − s| − log |r′ − s′|
)
− 2πεy(r + s− r′ − s′). (15)

Direct calculation of Seff in equation (14) results in

Seff = −2πKeff log |r − r′| − 2πεeff(y − y′), (16)
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where the screening from internal charges is absorbed in the effective model parameters

Keff = K − 4π3K2y2
0

∫ ∞
1

dxx3−2πK +O(ε2, y4
0), (17)

εeff = ε− 4π3Kεy2
0

∫ ∞
1

dxx3−2πK +O(ε2, y4
0). (18)

Here, ε = αβJ̃ is the effective electric field strength. Some technical details of the derivation
are reproduced in Appendix B. Giving the cut-off parameter b = e` in the integration over x,
we eventually obtain the following system of RG equations [7]

dK

d`
= −4π3y2

0K
2, (19)

dy0
d`

= (2− πK + πε)y0, (20)

dε

d`
= ε+ 4π3y2

0Kε. (21)

3. Discussion and summary
Below, we discuss the system of RG equations (19)–(21). For ε = 0, these equations describe
BKT transition at the temperature TC = πJ̃/2 between the underscreened and overscreened
regimes. In the underscreened regime realized at T < TC and π2y0 < |K−1−π/2|, all the vortices
in the system are coupled into dipoles resulting in zero effective screening. In RG language, it
means that K(`) and y0(`) flow towards the y0 = 0 line that corresponds to Keff = K according
to equation (17). In contrast, in the overscreened phase, T > TC or π2y0 > |K−1 − π/2|,
the dipoles disperse into free charges and the screening appears. In this scenario, the model
parameters flow towards the strong coupling fixed point at K = 0 and y0 =∞ [11].

Figure 2. RG flow for the Coulomb
gas in finite electric field. The flow in
ε = 0 plane is shown by green color.
The BKT transition point is at the
position (2/π, 0, 0).

The presence of the electric field drastically changes the above picture. Even infinitesimal
ε lifts BKT transition in favor of the overscreened scenario. Figure 2 show RG flow in the
axes K, y0, and ε calculated numerically from equation (19)–(21). In the ε = 0 plane, RG
flow is consistent with BKT transition behavior at the point (2/π, 0, 0). However, above the
transition point the electric field pulls positive and negative charges apart breaking the dipoles
and redirecting the flow towards the strong screening fixed point, K → 0 and y0 →∞.
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The absence of BKT transition in the system with finite ε can be understood from the
following simple argument. In 2D system, the electrostatic energy in a constant electric field
being linear in r becomes dominant over the logarithmic Coulomb attraction at sufficiently large
distances. Therefore, to gain the total energy, it is always favorable to break the dipole pairs
apart for any values of K and y0.

By noting that in our model the effective electric field is proportional to the strength of DM
interaction, we make the conclusion that DM interaction is relevant. The presence of in-plane
DM exchange in magnetic thin film should remove BKT transition and assist the observation of
free magnetic vortices.

In summary, we considered duality transformation and RG analysis in 2D chiral magnets with
in-plane DM interaction. It was demonstrated that this system can be mapped into the model
of 2D Coulomb gas of magnetic vortices with DM interaction playing the role of the effective
electric field directed perpendicularly to the original DM vector. By applying RG analysis, we
showed that the effective electric field greatly effects on the vortex-antivortex pairs, prevents
the formation of magnetic dipoles, and destroys BKT transition.
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Appendix A. Duality transformation
In the low temperature limit βJ̃ � 1, one can approximate periodic function in equation (2)
defined on the bond between ith and jth sites by a series of its expansions near each minimum
labeled by the integer mij

eβJ̃(cos Θij−1) ≈
∞∑

m=−∞
exp

[
−βJ̃2 (Θij − 2πmij)2

]
, (A.1)

where Θij = θi − θj − αij . The summation over mij is transformed into the integration over
φij-field using the Poisson formula

∞∑
m=−∞

f(m) =
∞∑

l=−∞

∫ ∞
−∞

dφ f(φ)e2πilφ, (A.2)

and after integrating out φ, we arrive to the following expression for the partition function

Z ∝
∑
{lij}

∫ ∏
i

dθi exp

−∑
〈ij〉

(
l2ij

2βJ̃
− ilijΘij

)
+ βh

∑
i

cos θi

 . (A.3)

We replace θi → θ(r) and lij → lµ(r) where µ = y, z, and take the advantage of infinite lattice

−i
∑
〈ij〉

lij (θi − θi)→ −i
∑
rµ

lµ(r) [θ(r)− θ(r + aµ)] = −i
∑
rµ

[l(r)− l(r − aµ)] θ(r), (A.4)

which gives

Z ∝
∑
{lµ(r)}

∫ ∏
r

dθ(r)

× exp
[
−
∑
rµ

(
l2µ(r)
2βJ̃

− i [l(r)− l(r − aµ)] θ(r) + iαµlµ(r)
)]

exp
[
βh
∑
r

cos θ(r)
]
. (A.5)
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Now it is possible to integrate over θ from 0 to 2π using the expansion

ez cos θ = I0(z) + 2
∞∑
k=1

Ik(z) cos(kθ), (A.6)

that gives equation (3).

Appendix B. Effective model parameters
Here we highlight crucial steps in the derivation of RG equation following the discussion in [11].
First, we rewrite (14) in the following form

eSeff = e−2πK log |r−r′|−2πεy(r−r′)

×
[
1 + y2

0

∫
d2s

∫
d2s′e−2πK log |s−s′|−2πεy(s−s′)

(
e2πKD(r,r′;s,s′) − 1

)]
+O(y4

0), (B.1)

where
D(r, r′; s, s′) = log |r − s′|+ log |r′ − s| − log |r − s|+ log |r′ − s′|, (B.2)

and change to the center of mass variables X = (s+ s′)/2 and x = s− s′. Second, we expand
over |x| keeping only terms up x2

e2πKD(r,r′;s,s′) − 1 = 2πKx ·∇Xf(X) + 2π2K2 (x ·∇Xf(X))2 +O(x3), (B.3)
e−2πεy(s−s′) = 1− 2πε (x · ey) +O(x2), (B.4)

where f(X) = log |r −X| − log |r′−X|. Substitution of these equations in (B.1) gives

eSeff = e−2πK log |r−r′|−2πεy(r−r′)

×
[
1− 4π2Kεy2

0

∫
d2x

∫
d2Xe−2πK log |x|(x · ey)x ·∇Xf(X)

+2π2K2
∫
d2x

∫
d2Xe−2πK log |x| (x ·∇Xf(X))2

]
+O(ε2, y4

0). (B.5)

In the first integral we perform integration over the angular part of x and use the identity
ey =∇X(X · ey) that provides the answer∫

d2x

∫
d2Xe−2πK log |x|(x · ey)x ·∇Xf(X) = −2π2ey · (r − r′)

∫ ∞
1

dxx3−2πK , (B.6)

where we introduced an infrared cut-off at the lattice spacing distances. The second integral is
calculated using 2D form of the Poisson equation

∇2
X log |r −X| = 2πδ(r −X), (B.7)

that provides∫
d2x

∫
d2Xe−2πK log |x| (x ·∇Xf(X))2 = (2π)2 log |r − r′|

∫ ∞
1

dxx3−2πK . (B.8)

After substitution of (B.6) and (B.8) in (B.5), we obtain equations (17, 18).
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