ющий эффект; ингибирование отложений солей жесткости при субстехиометрических концентрациях.

При изучении процессов комплексообразования, протекающих в квазидвойных системах, установлено, что для полного выхода комплексоната меди(II) необходим пятикратный избыток лиганда, а для дикарбоксилатов меди(II) – пятнадцатикратный избыток лиганда. Смешанолигандные комплексы в квазитройных системах образуются при оптимальном соотношении реагентов медь(II) – ФБТК –дикарбоновая кислота 1:5:15. В кислых средах при pH < 2 процессы комплексообразования в квазидвойных и квазитройных системах не протекают. Дальнейшее увеличение щёлочности растворов 2,0 ≤ рН ≤ 5 сопровождается формированием комплексоната и дикарбоксилатов меди(II). В квазитройных системах присоединение вторых лигандов наблюдается в области кислотности 4,0 ≤ рН ≤ 6,5 и сопровождается образованием смешанолигандных комплексов. Состав и отрицательные логарифмы полных констант устойчивости комплексов соответственно равны: $lg\beta$ (CuH₃L) = 24,31; $lg\beta$ (Cu(OH)Mal⁻) = 15,46; $lg\beta$ (Cu(OH)₂Mal²⁻) = 26,07; $lg\beta$ (CuMlc) = 3,61; $lg\beta$ (CuH₃LMal²⁻) = 31,19; $lg\beta$ (CuH₂LMlc²⁻) = 29,32. Максимумы спектров поглощения и значения молярных коэффициентов погашения комплексов имеют следующие характеристики: CuH_3L ($\lambda = 712$, $\epsilon = 26$ моль·см/дм³); CuMlc ($\lambda = 740$, $\varepsilon = 51.0$ моль·см/дм³); Cu(OH)Mal⁻ ($\lambda =$ 780, $\varepsilon = 28,5$ моль·см/дм³); Cu(OH)₂Mal²⁻ ($\lambda = 740$, $\varepsilon = 35,5$ моль·см/дм³); CuH₃LMal²⁻ (λ = 740 ε = 26.2 моль cm/дм³); CuH₃LMlc (λ = 710, ε = 26.1 моль \cdot см/дм³).

ЭКСТРАКЦИОННОЕ ИЗВЛЕЧЕНИЕ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ РАСТВОРОВ ПОДЗЕМНОГО ВЫШЕЛАЧИВАНИЯ

Буньков Г.М., Кириллов Е.В., Чёрный М.Л. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

В связи с восстановлением производства редкоземельных элементов (РЗЭ) в России, актуальной становится задача их попутного извлечения в чёрной, цветной и редкометальной промышленности, а так же вовлечение в переработку нетрадиционного сырья.

Одной из отличительных особенностей такого сырья является малое содержание РЗЭ (сотые доли процента) на фоне большого содержания соединений кремния, алюминия, железа и кальция и т.д. Вышеперечисленные особенности приводят к тому, что для извлечения РЗЭ с до-

статочно высоким выходом необходимо использовать специальные технологические приёмы - сорбцию и экстракцию.

Последние 20 лет промышленное применение нашли твёрдые экстрагенты ТВЭКС, как системы, максимально сочетающие в себе все достоинства сорбции и экстракции.

Нами синтезирован и исследован для процессов извлечения РЗЭ из растворов новый ТВЭКС, полученный импрегнированием пористого полимера ди-2-этилгексилфосфорной кислотой Д2ЭГФК.

Установлено, что применение ТВЭКСа позволяет добиться очистки от сопутствующих примесей и сконцентрировать РЗЭ в 20-30 раз. Определены оптимальные параметры процесса (температура, кислотность, соотношение фаз). Установлен характер экстракции РЗЭ ТВЭКСом с использованием ИК-спектроскопии, определен состав экстрагируемогого соединения.

На предмет извлечения РЗЭ из реальных продуктивных растворов, проведено сравнение синтезированного ТВЭКС с промышленно выпускающимся образцами. Выявлена более высокая избирательности синтезированного ТВЭКС к РЗЭ из высокоминерализированных растворов, по сравнению с промышленными образцами.