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Abstract. Non-equilibrium phenomena such as the disappearance of solute

drag, the origin of solute trapping and evolution of disorder trapping occur dur-

ing fast transformations with originating metastable phases [D.M. Herlach, P.K.

Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (El-

sevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of

disorder trapping by a rapidly moving phase interface is presented. Using a

model of fast phase transformations, a system of governing equations for the

diffusion of atoms, and the evolution of both long-range order parameter and

phase field variable is formulated. First numerical solutions are carried out for

a congruently melting binary alloy system.

1 Introduction

Disorder trapping is a known non-equilibrium phenomenon occurring during transformations

of congruently melting ordered intermetallic compounds [1, 2]. This phenomenon occurs es-

pecially during rapid crystallization of undercooled melts of intermetallics with a superlattice

crystalline structure [3–5]. In such systems, the phase interface propagation is sluggish at

small undercoolings. The attachment of atoms from the liquid to the phase interface needs

short-range atomic diffusion, since atoms have to move to the proper lattice site in the super-

lattice structure. If the undercooling increases, the non-equilibrium effect of disorder trapping

leads to the formation of a metastable disordered structure. Experimental evidence of disor-

der trapping has been demonstrated by in situ diffraction studies using synchrotron radiation

on levitation-processed samples, in which a transition from ordered to disordered growth at

a critical undercooling was unambiguously shown [6]. The phenomenon of order–disorder

transition with distinct change of the order parameter is also important in structural trans-

formations with non-monotonic relaxation processes of melts [8] and in liquid–liquid phase

separation of undercooled metallic alloys [9, 10].

The disorder trapping was investigated from theoretic perspective by sharp interface mod-

els [2, 3, 6], a diffuse interface model [11] and methods of atomistic simulation [1, 12]. In

the present work, using an existing approach for fast phase transformations [13], a diffuse
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interface model results in a system of hyperbolic equations to describe (i) the rapid interface

motion and (ii) the transition from ordered to disordered structures formed from undercooled

liquids. The pioneering atomistic model of Chernov [1] and thermodynamic model of Boet-

tinger and Aziz [2] consider a process of ordering at the interface only. The present diffuse

interface model introduces spatial variation of order parameter such that the order-disorder

transition and relaxation of order parameter exist in the diffuse zone between phases as well

as in a solid phase far behind the solid-liquid interface. In addition to previous works [1–

3, 6, 11], the present model takes into account highly rapid interface propagation at which

locally non-equilibrium states in chemical composition and in atomic ordering are freezing

in solid phase with an appearance of metastable states.

In the numerical solutions of the model, we test the existence of pronounced disorder

trapping by direct exchange of dissimilar atoms between sublattices at high interface veloci-

ties moving in an undercooled binary liquid. The main focus of the present work is to analyze

numeric results and to formulate conditions for disorder trapping in rapidly transforming con-

gruently melting alloy undercooled in the liquid state.

2 Definitions

2.1 Main functions

We consider a binary mixture consisting of A-atoms and B-atoms. For a given temperature

T , the main functions of the model, which should be obtained by solutions, are defined as

follows. The first function is ϕ the phase field with ϕ = 1 in the S -phase (solid) and ϕ = 0

in the L-phase (liquid). The second function is xB the overall continuous concentration of

B-atoms (which can be defined through the L-phase and S -phase concentrations). Concen-

trations in the S -phase are given by x j
i = n j

i /(n
j
A + n j

B), where n j
i is the number of moles of

atom i (i=A,B) on the sublattice j ( j = α, β). Finally, the third function is the long-range

order parameter η, which is defined by the concentrations x j
i = (xαA,x

β
A,x
α
B,x
β
B) of the α− and

β−sublattices as
η = xαA − xβA = xβB − xαB. (1)

A completely disordered state in the S -phase occurs with η = 0. Atoms exhibit full order on

sublattices if η = 1. The concentrations in the S -phase on sublattices are

xαA = 1 − xB − η
2
, xαB = xB − η

2
, (2)

xβA = 1 − xB +
η

2
, xβB = xB +

η

2
. (3)

2.2 Gibbs free energy

2.2.1 The entire system

The Gibbs free energy for the entire binary system is given by

G(ϕ,∇ϕ, η,∇η, xB) = GS (xB, η)p(ϕ) +GL(xB)p(1 − ϕ)
+
εϕ

2
(∇ϕ)2 + εη

2
(∇η)2 +Wϕgϕ(ϕ) +Wηgη(η). (4)

The double-well functions in Eq. (4) for the phase field gϕ and for the long-range order

parameter gη are given by

gϕ(ϕ) = ϕ
2(1 − ϕ)2, gη(η) = η2(1 − η)2. (5)
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The Gibbs free energy is interpolated between the phases using the following function

p(ϕ) = ϕ2(3 − 2ϕ). (6)

2.2.2 The phases

In the L-phase we assume the following approximation

GL(T, xB) = (1 − xB)GA
L(T ) + xBGB

L(T ), (7)

GA
L(T, xB) = G0A

L (T ) + RT ln(1 − xB) + xBΩL, (8)

GB
L(T, xB) = G0B

L (T ) + RT ln(xB) + (1 − xB)ΩL, (9)

which can be considered as contribution (7) from elements A and B, reference terms G0i
L ,

ideal mixture terms RT ln xi, and excess terms xiΩL (where again i = A, B).
In the S -phase, the Gibbs free energy has additional terms related to the disorder param-

eter

GS (T, xB, η) = Gre f
S (T, xB) +Gid

S (T, xB, η) +Gex
S (xB, η). (10)

Assuming that the L-phase transforms into the body centered cubic modification of the S -

phase, the following contributions into the free energy (10) are taken into account:

- reference contribution

Gre f
S (T, xB) = (1 − xB)Gbcc

A (T ) + xBGbcc
B (T ), (11)

- ideal mixture contribution

Gid
S (T, xB, η) =

1

2
RT

(
(xB − η

2
) ln(xB − η

2
) + (xB +

η

2
) ln(xB +

η

2
)

+ (1 − xB − η
2
) ln(1 − xB − η

2
) + (1 − xB +

η

2
) ln(1 − xB +

η

2
)

)
, (12)

- excess free energy

Gex
S (xB, η) = Ω2

(
xB(1 − xB) +

η2

4

)
+ Ω3η

3 + Ω4η
4. (13)

3 Governing equations

Following the model of fast phase transformations [13], one can derive governing equations

represented by hyperbolic equations for non-conserved and conserved field variables. They

were obtained by the condition of non-decreasing entropy in time that, for isothermal systems,

is equivalent to the condition of non-increasing Helmholtz free energy in time [14]. Following

these approaches [13, 14], one can derive the system of governing equations using the Gibbs

free energies from Section 2.2 as thermodynamic potentials accessible from thermodynamic

databases. Then, one can find governing equations for

- the phase field

τϕ
∂2ϕ

∂t2
+
∂ϕ

∂t
= −Mϕ

δG
δϕ
, (14)

- the long-range order parameter

τη
∂2η

∂t2
+
∂η

∂t
= −Mη

δG
δη
, (15)
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- the concentration and chemical potential

τD
∂2xB

∂t2
+
∂xB

∂t
= ∇ · (Mx∇μB) , μB =

δG
δxB
. (16)

The hyperbolic equations (14) and (15) are damped wave equations, which extend known

parabolic equation for the non-conserved order parameter derived first by Mandel’shtam–

Leontovich [15, 16] and known in literature as the time–dependent Ginzburg-Landau equa-

tion [16, 17] or Allen-Cahn equation [18]. The hyperbolic equation (16) generalizes the

known parabolic equation for the conserved order parameter derived and analyzed first by

Khachaturyan [19] and Cahn and Hilliard [20]. Equations (14)-(16) were applied to non-

monotonic relaxation [7, 8], phase segregation [9] and were analyzed in the context of fast

dynamics during transitions from un(meta)stable to (meta)stable states [21]. The validity

of hyperbolic type models in fast phase transition theory has been verified by comparison

with experimental data [22], in molecular dynamics simulations of the solute trapping effect

by rapidly moving interfaces [23] and by coarse graining derivations of phase field equa-

tions [24].

3.1 Phase-field

In its explicit form, the governing equation for the phase field comes from Eqs. (4)-(14). As

a result one finds

τϕ

Mϕ

∂2ϕ

∂t2
+

1

Mϕ

∂ϕ

∂t
= εϕ∇2ϕ − Wϕ

dgϕ(ϕ)
dϕ

−
[
(1 − xB)Gbcc

A + xGbcc
B

+
RT
2

(
(xB − η/2) ln(xB − η/2) + (xB + η/2) ln(xB + η/2)

+ (1 − xB − η/2) ln(1 − xB − η/2) + (1 − xB + η/2) ln(1 − xB + η/2)

)

+ Ω2(xB(1 − xB) + (1/4)η2) + Ω3η
3 + Ω4η

4

]
dp(ϕ)

dϕ

−
(
(1 − xB)

(
G0A

L + RT ln(1 − xB) + xBΩL

)
+ xB

(
G0B

L + RT ln(xB) + (1 − xB)ΩL

))dp(ϕ)
dϕ

(17)

Without the ordering process, i.e. if η = 0, Eq. (17) transforms into the one derived in

Refs. [13, 14].

3.2 Order parameter

Atomic ordering in α- and β-sublattices is described by Eq. (15) together with the free en-

ergy (4)-(13) by the following equation:

τη

Mη

∂2η

∂t2
+

1

Mη

∂η

∂t
= εη∇2η − Wη

dgη(η)
dη

−
[
RT
2

(
− 1

2
ln(xB − η/2) + 1

2
ln(xB + η/2)

− 1

2
ln(1 − xB − η/2) + 1

2
ln(1 − xB + η/2)

)

+
1

2
Ω2η + 3Ω3η

2 + 4Ω4η
3

]
p(ϕ) (18)
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From Eq. (18) it follows that the process of atomic ordering is coupled with the phase field

by the interpolation function p(ϕ).

3.3 Chemical diffusion

The chemical potential from Eq. (16) is given by the variational derivative

μB =
δG
δxB
=

[
Gbcc

B −Gbcc
A +

RT
2

(
ln(xB− η

2
)+ ln(xB+

η

2
)− ln(1− xB− η

2
)− ln(1− xB+

η

2
)

)
+Ω2(1−2xB)

]
p(ϕ)

+

[
G0B

L −G0A
L + RT {ln(xB) − ln(1 − xB)} + 2(1 − 2xB)ΩL

]
p(1 − ϕ). (19)

The mobility Mx in the diffusion equation Eq. (16) is an interpolation between the bulk

mobilities in the liquid ML and in the solid MS :

Mx = ML (1 − p(ϕ))+MS (η)p(ϕ) = ML (1 − p(ϕ))+
(
Mdisorder

S (1 − η) + Morder
S η

)
p(ϕ). (20)

As follows from Eq. (20), the bulk mobility MS (η) in the solid is interpolated by atomic

mobilities Morder
S and Mdisorder

S in the ordered state and disordered state, respectively.

Table 1. Physical parameters of the A50B50 alloy used for phase field modeling

Parameter Value Reference

Concentration of A(B), xB 0.5 mole fraction present work

η-rate relaxation time, τη 4 · 10−8 s present work

ϕ-rate relaxation time, τϕ 4 · 10−11 s present work

xB-rate relaxation time, τD 4 · 10−10 s present work

Mobility of the η-field, Mη 8 · 104 mole · J−1 · s−1 present work

Mobility of the ϕ-field, Mϕ 4 · 105 mole · J−1 · s−1 present work

Mobility of B-atoms in the L-phase, ML 2 · 10−8 mole · m2 · J−1 · s−1 present work

Mobility of B-atoms in the disordered state, Mdisorder
S 7 · 10−11 mole · m2 · J−1 · s−1 present work

Mobility of B-atoms in the ordered state, Morder
S 9 · 10−12 mole · m2 · J−1 · s−1 present work

Gradient factor for the η-field, εη 1.4 · 10−13 J · m2 · mole−1 present work

Gradient factor for the ϕ-field, εϕ 5.5 · 10−12 J · m2 · mole−1 present work

Energy barrier between states in the η-field, Wη 2.5 · 103 J · mole−1 present work

Energy barrier between states in the ϕ-phase, Wϕ 4.5 · 103 J · mole−1 present work

1st Thermodynamic parameter, Ω2 −2 · 103R J/mole [2]

2nd Thermodynamic parameter, Ω3 −1.225 · 106R J/mole present work

3rd Thermodynamic parameter, Ω4 −5.662 · 102R J/mole [2]

4th Thermodynamic parameter, ΩL −1.72 · 104 J/mole [2]

4 Material parameters and modeling

The spatially inhomogeneous evolution of ordered and disordered states has been modeled

by the numerical solution of the equations for diffusion (16), (19) and (20), phase field mo-

tion (17) and ordering (18). Material parameters have been chosen for a binary congruently

melting A50B50 alloy. Functions G0A
L (T ), G0A

L (T ), Gbcc
A (T ), and Gbcc

B (T ) from Eqs. (7)-(9) and

5
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Figure 1. Behavior of the phase field interface velocity Vϕ and long-range order parameter η as func-

tions of liquid undercooling ΔT = TL − T , where TL is the liquidus temperature (calculated as the tem-

perature for “liquid–ordered phase” co-existence). Two cases show the change of the transformation

kinetics depending on the thermodynamic parameter Ω3 which regulates the barrier height for atomic

diffusion jumps between sublattices α and β, see Eq. (13).

(11) are taken from the thermodynamical data base of elements (CALPHAD) for a Ni50Al50
alloy.

The numerical scheme for the solution of the model consists of a finite difference (FD)

scheme of second order with explicit time stepping. The initial concentration distribution

was taken as homogeneous, xB = 0.5, while both phase field ϕ and order parameter η were

initialized to unity in the solid and zero in the liquid, connected by a smooth transition at

the interface, which was described by a Gaussian error function with a width of 1 micron,

corresponding to 10 FD nodes. Boundary conditions were Dirichlet type conditions on the

solidifying side and Neumann type (i.e., zero flux) conditions in the liquid far away from the

interface.

Numerical solutions of Eqs. (16), (19), (20), 17), and (18) were achieved in a one-

dimensional space. To obtain steady state results, average values of the interface velocity Vϕ
for the phase field and the long-range order parameter η where determined as follows. The

phase-field has a step-like shape with ϕ = 1 in the solid and ϕ = 0 in the liquid. Because the

solid-liquid interface is a diffuse interface, the conventional definition of the interface position

is the point z f where ϕ(z f ) = 0.5. In this work we adopt another definition of the interface

position. z f =
∫ +∞
−∞ ϕ(z

′)dz′ is exact for the case of a symmetric interface profile and allows us

to find an exact interface velocity in case of a steady state profile. During the simulation run,

we collect the values of the interface position zn
f at times tn after a fixed number (e.g. 2000)

of time steps. The current interface velocity Vϕ is obtained as Vn
ϕ = (zn

f − zn−1
f )/(tn − tn−1).

After the system reaches a steady state regime, we calculate the steady state interface velocity
V (avg)
ϕ as the average of the last ten values Vn

ϕ . The average value of the order parameter η
in the solid phase right beyond the interface is determined as the average of 11 FD nodes

6
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Figure 2. Behavior of the phase field interface velocity Vϕ and long-range order parameter η as

functions of liquid undercooling ΔT = TL − T , where TL is the liquidus temperature (calculated as

the temperature for “liquid–ordered phase” co-existence). Two cases show the change of the trans-

formation kinetics depending of the time τη for relaxation of the ordering rate ∂η/∂t to change the

regime from inertial (ballistic) to dissipative (diffusive) [21]. The η-gradient factor has been chosen as

εη = 1.4 · 10−11 (J · m2 · mole−1).

at a distance of 10 FD spacings behind the interface, i.e. the FD nodes 10 to 20 behind the

calculated interface position.

5 Results

Figures 1 and 2 show the influence of various parameters for the ordering process on both

the transition from L-phase to S -phase and on the ordering process itself. Namely, Fig. 1

presents the kinetics change due to different values of Ω3. It can be seen that with a non-zero

value of the barrier Ω3 [see Eq. (13)] the kinetics of transformation qualitatively changes

with a decrease in Vϕ and a shift in the disorder transformation velocity VDT to its large

values. Figure 2 illustrates the influence of gradient factor and relaxation time τη on the

transformation kinetics. The time τη characterizes the relaxation to local equilibrium in the

η-field, i.e., the relaxation of the rate ∂η/∂t. An increase in the relaxation time τη moves the

initiation of disorder trapping to smaller undercoolings.

6 Kinetics and temporal conditions for trapping of disorder

Finally, on the basis of our numerical results (see Section 5), we formulate a condition of dis-

order trapping by a moving diffuse interface. During fast transformations the disorder trap-

ping effect occurs when a particular atom has no time to find its equilibrium position within

the diffuse interface and remains in a higher energetic position. Instead of a phase with com-

plete atomic order, a disordered metastable phase is appearing behind the diffuse interface.

This effect becomes important at phase interface velocities Vϕ larger than a characteristic

7

   
 

 
DOI: 10.1051/, 05001 (2017) 715101EPJ Web of Conferences epjconf/20151

LAM-16
5001



���

�
�

��

��

���

�

�

���

�

�

���	
�� ����
��	����

�
�

�
�
�

��

�

��
��

�


�

�
��

��

�

��
�

�
�

��
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

	�
�

��

Figure 3. Profiles of the phase field φ and long-range order parameter η with their thickness δϕ and δη,

respectively. (a) Fully ordered state, Vϕ � VDT . (b) Partial disorder trapping, Vϕ ≈ VDT . (c) Complete

disorder trapping, Vϕ > VDT .

value of the order of VDT ∝ Dη/δη (with Dη = Mηεη being the characteristic diffusion coeffi-

cient in solid phase for the ordering process, and δη the thickness of the interface for ordering).
Indeed, when Vϕ > VDT , the characteristic time δϕ/Vϕ of the diffuse interface of thickness δϕ
becomes smaller than the typical time δ2η/Dη required for complete ordering within the dif-

fuse interface. As a result, disorder trapping by the diffuse interface exists under the velocity

condition V > Dη/δη, or under the time scale condition δϕ/Vϕ < δ2η/Dη = δη/VDT . From

these conditions it follows that the critical velocity for the disorder trapping, VDT , becomes

smaller as the ratio between the thickness of the ordering zone δη and the diffuse interface

thickness δϕ increases:

VDT <
δη

δϕ
Vϕ. (21)
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As follows from the inequality (21), the disorder trapping becomes more pronounced with the

increase of the diffuse interface velocity Vϕ and the decrease of the diffuse interface thickness

δϕ. Furthermore, with a “sharper” ordering zone, i.e., with decreasing δη, the beginning of

disorder trapping is shifted to larger phase interface velocities. These situations are illustrated

in Fig. 3.

7 Conclusions

1. Using a phase field method in the theory of fast phase transformations, a new model for

disorder trapping by a rapidly moving interface is formulated. The model consists of a system

of hyperbolic equations for mass transport by atomic diffusion, dynamics of the phase field,

and dynamics of atomic ordering.

2. The system of model equations has been solved numerically to reach steady-state from

initially non-stationary states. For these steady-states, the interface velocity and long-range

order parameter are analyzed depending on the type of free energy and relaxation time τη for
the rate of long-range order parameter ∂η/∂t.
3. It has been shown quantitatively that there are critical undercoolings at which the trapping

of disorder begins and finishes with the formation of a completely disordered phase. Using

the results of our computations, a criterion for disorder trapping by rapid diffuse interface has

been formulated.
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