
Theoretical Computer Science 391 (2008) 99–108
www.elsevier.com/locate/tcs

An algorithm for recognition of n-collapsing words

I.V. Petrov

Department of Mathematics and Mechanics, Ural State University, 620083 Ekaterinburg, Russia

Abstract

A word w over a finite alphabet Σ is n-collapsing if for an arbitrary deterministic finite automaton A = 〈Q,Σ , δ〉, the
inequality |δ(Q, w)| ≤ |Q| − n holds provided that |δ(Q, u)| ≤ |Q| − n for some word u ∈ Σ+ (depending on A). We prove that
the property of n-collapsing is algorithmically recognizable for any given positive integer n. We also prove that the language of all
n-collapsing words is context-sensitive.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Deterministic finite automaton; n-collapsing word; Context-sensitive language

1. Main result and its application

Let A = 〈QA ,Σ , δA 〉 be a deterministic finite automaton (DFA), where QA denotes the state set, Σ stands for
the input alphabet, and δA : QA × Σ → QA is the transition function defining an action of the letters in Σ on
QA . This action can be uniquely extended to an action QA × Σ ∗ → QA of the free monoid Σ ∗ over Σ with the
empty word λ; the latter action is still denoted by δA . Given a word w ∈ Σ ∗ and a non-empty subset X ⊆ QA ,
we write δA (X, w) for the set {δA (x, w) | x ∈ X} and say that the word w acts on the set X . The difference
d fw(A) = |QA | − |δA (QA , w)| is called the deficiency of the action of w on the automaton A .

Let n be a positive integer. A DFA A = 〈QA ,Σ , δA 〉 is said to be n-compressible if there is a word w ∈ Σ ∗ such
that d fw(A) ≥ n. The word w is then called n-compressing with respect to A . We note that there is a straightforward
algorithm that verifies whether a given DFA is n-compressible; the time complexity of this algorithm is a quadratic
polynomial of the number of states of the DFA.

A word w ∈ Σ ∗ is said to be n-collapsing if w is n-compressing with respect to every n-compressible DFA whose
input alphabet is Σ . In other words, a word w ∈ Σ ∗ is n-collapsing if for any DFA A = 〈QA ,Σ , δA 〉 we have
d fw(A) ≥ n whenever A is n-compressible. Thus, such a word is a ‘universal tester’ whose action on the state set
of an arbitrary DFA with a fixed input alphabet exposes whether or not the automaton is n-compressible.

It is known that n-collapsing words exist for every n and over every finite alphabet Σ , see [7, Theorem 3.3] or [4,
Theorem 2]. As the existence has been established, the next crucial step is to master, for each positive integer n, an
algorithm that recognizes whether a given word is n-collapsing. This problem is non-trivial whenever n > 1 and
|Σ | > 1 which will be assumed throughout. In [2], where the recognition problem was first formulated, it was solved

E-mail address: ilja petrov@list.ru.

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.10.034

http://www.elsevier.com/locate/tcs
mailto:ilja_petrov@list.ru
http://dx.doi.org/10.1016/j.tcs.2007.10.034

100 I.V. Petrov / Theoretical Computer Science 391 (2008) 99–108

for the case n = 2. A more geometric version of this solution was presented in [1]. The algorithm in [1] produces for
a given word w ∈ Σ ∗ a finite number of inverse automata such that w is not 2-collapsing if and only if at least one of
these inverse automata can be completed to a 2-compressible DFA A = 〈Q,Σ , δ〉 with |Q| < |w| and d fw(A) = 1
(here and below |w| stands for length of the word w).

No analogue of the algorithms from [1,2] is known for n-collapsing words with n > 2. Therefore, the author
has tried another approach aiming to show that the language Cn(Σ) of all n-collapsing words over Σ is decidable in
principle, i.e. Cn(Σ) is a recursive subset of Σ ∗. For this, it suffices to find, for each positive integer n, a computable
function fn : N→ N such that a word w ∈ Σ ∗ is n-collapsing provided d fw(A) ≥ n for every n-compressible DFA
A = 〈Q,Σ , δ〉 with |Q| ≤ fn(|w|). Indeed, if such a function exists, then, given a word w, one can calculate the
value m = fn(|w|) and then check the above condition through all automata with at most m states. Since there are
only finitely many such automata with the input alphabet Σ , the procedure will eventually stop. If in the course of the
procedure one encounters an n-compressible DFA A with d fw(A) < n, then w is not n-collapsing by the definition.
If no such automaton is found, then w is n-collapsing by the choice of the function fn .

From the results of [1] it follows that, for n = 2, the function f2(|w|) = max{3, |w| − 1} satisfies the desired
property. The author first managed to show that the functions fn(|w|) = 3|w|(n − 1) + n + 1 satisfy the desired
property for every n. This result was announced (with an outline of the proof) in the survey paper [3]. Here we
improve this result by showing that some smaller functions, namely fn(|w|) = 2|w|(n − 1) + 2, do the job as well.
Thus, the main result of the present paper is the following theorem.

Theorem 1. Let w ∈ Σ ∗ be a word which is not n-collapsing. Then there exists an n-compressible automaton
D = 〈QD ,Σ , δD 〉 with |QD | ≤ 2|w|(n − 1)+ 2 such that d fw(D) < n.

Since the function fn(|w|) = 2|w|(n − 1) + 2 is linear (with respect to |w|), we immediately obtain a non-
deterministic linear space and polynomial time algorithm recognizing the complement of the language Cn(Σ) of
all n-collapsing words over Σ : the algorithm simply makes a guess consisting of a DFA A = 〈QA ,Σ , δA 〉 with
|QA | ≤ 2|w|(n − 1) + 2 and then verifies that A is n-compressible and that w is not n-compressing with respect
to A . By classical results of formal language theory (cf. [5, Sections 2.4 and 2.5]), this implies that the language
Cn(Σ) is context-sensitive. We mention that Pribavkina [6] has shown that the language C2(Σ) with |Σ | = 2 is not
context-free. For the case when either n > 2 or |Σ | > 2, the problem of locating the language Cn(Σ) with respect to
the Chomsky hierarchy still remains open.

2. The proof of Theorem 1

It is convenient for us to think of each DFA A = 〈QA ,Σ , δA 〉 as a digraph with the vertex set QA . We denote
by (p, a, q) the edge from p ∈ QA to q ∈ QA labeled by the letter a ∈ Σ . We shall identify the transition function
δA : QA × Σ → QA with its graph {(v, a, δA (v, a)) | v ∈ QA , a ∈ Σ }; that is, the expressions (p, a, q) ∈ δA
and δA (p, a) = q mean the same. We denote the set {(v, a, δA (v, a))|v ∈ QA } by δA (•, a), i.e. δA (•, a) is the set
of all edges labeled by a; on the other hand, δA (•, a) is the transformation of the set QA under applying the letter a.

We need some notations and definitions. Let u be a word in Σ ∗. We denote by u[k] and uk the kth letter and the
prefix of length k of the word u (k ≤ |u|). That is if u = a1a2 . . . at , then u[k] = ak and uk = a1a2 . . . ak respectively.
Furthermore, by definition put u0 = λ.

If u, v are words over Σ and u = v′vv′′ for some v′, v′′ ∈ Σ ∗, we say that v is a factor of u. It is convenient to
have a name for the property of a word w ∈ Σ ∗ to have all words of length n among its factors. We say that such a
word w is n-full. We say that an n-compressible automaton A is n-proper if no word of length n is n-compressing
with respect to A .

The following lemma is a direct corollary of [2, Lemma 2.1].

Lemma 2. If a word w is not n-full, then there is an n-compressible automaton A = 〈QA ,Σ , δA 〉 such that
|QA | ≤ |w| and d fw(A) < n.

In view of Lemma 2, in the sequel we consider only n-full words. Fix an n-full word w ∈ Σ ∗ which is not n-
collapsing and consider an n-compressible DFA A = 〈QA ,Σ , δA 〉 such that d fw(A) < n. The word w has every
word of length n as a factor whence the automaton A is n-proper. Suppose d fw(A) = k < n. In this case we extend
the automaton A to a new automaton B = 〈QB,Σ , δB〉 with d fw(B) = n−1. For this, we append n−k new states

I.V. Petrov / Theoretical Computer Science 391 (2008) 99–108 101

Fig. 1. Redistributing tokens under the action of the letter a.

Fig. 2. Marking induced by the transition shown in Fig. 1.

q1, . . . , qn−k and extend the transition function to these new states by letting δB(qi , a) = q1 for all i = 1, . . . , n − k
and all a ∈ Σ . The following lemma is a direct corollary of the definition of B.

Lemma 3. The DFA B is an n-proper and n-compressible automaton, and d fw(B) = n − 1.

Now assume that some of the states of the DFA B are covered by tokens and the action of any letter a ∈ Σ
redistributes the tokens according to the following rule: a state q ∈ QB will be covered by a token after the action of
a if and only if there exists a state q ′ ∈ QB such that δB(q ′, a) = q and q ′ was covered by a token before the action.
In more ‘visual’ terms, the rule amounts to saying that tokens slide along the edges labeled by a and, whenever several
tokens arrive at the same state, all but one of them are removed. Fig. 1 illustrates this rule: its right part shows how
tokens are distributed over the state set of a DFA after completing the action of the letter a on the distribution shown
on the left. It is convenient to call a state empty if it is not currently covered by a token.

Let ` = |w|. We cover all states in QB by tokens and let the letters w[1], . . . , w[`] act in succession. On the kth
step of this procedure we mark all elements of the following sets of states:

M(1, k) = QB\δB(QB, wk);

M(2, k) = δB(QB\δB(QB, wk−1), w[k]) = δB(M(1, k − 1), w[k]).

The meaning of these sets can be easily explained in terms of the distribution of tokens before and after the action of
the letter w[k]. The set M(1, k) consists of empty states after the action of the letter w[k]. The set M(2, k) is the set of
all states to which the letter w[k] brings states that had been empty before the action of w[k]. Note that M(2, 1) = ∅
because there is no empty state before the action of the first letter of w.

For example, assume that the transition shown in Fig. 1 represents the kth step of the above procedure (so that
w[k] = a). Then three states get marks as shown on Fig. 2. Indeed, M(2, k) = {4} because 3 was the only empty state
before the action of a and δB(3, a) = 4. Further, M(1, k) = {2, 5}.

Put M =
⋃

1≤k≤`
(M(1, k) ∪ M(2, k)). We call M the set of marked states of the DFA B or the marked set for short.

The next proposition registers an important property of the marked set.

Proposition 4. Let a ∈ Σ , p, r ∈ QB and p 6= r . If δB(p, a) = δB(r, a), then δB(p, a) ∈ M.

Proof. Since the word w is n-full, it has at least one factor an . Let w = wi anv. The automaton B is n-proper whence
d fan (B) ≤ n − 1. Therefore the non-increasing chain QB ⊇ δB(QB, a) ⊇ δB(QB, a2) ⊇ · · · stabilizes after at
most n − 1 steps whence a acts on the set δB(QB, an−1) as a permutation.

Let q = δB(p, a) = δB(r, a). If q /∈ δB(QB, an−1) then

q ∈ QB\δB(QB, an−1) ⊆ QB\δB(QB, wi a
n−1) = M(1, i + n − 1) ⊆ M.

102 I.V. Petrov / Theoretical Computer Science 391 (2008) 99–108

Now assume q ∈ δB(QB, an−1). The states p and r cannot simultaneously belong to δB(QB, an−1) because
a acts as a permutation on this set while δB(p, a) = δB(r, a). Without loss of generality, assume that p /∈

δB(QB, an−1). Then

p ∈ QB\δB(QB, wi a
n−1) ⊆ M(1, i + n − 1).

Therefore q ∈ M(2, i + n) ⊆ M . �

An edge e = (q1, a, q2) of the automaton B is called:

• inner if it connects two marked states of B, i.e. q1, q2 ∈ M . By IE(B, a) we denote the set of all inner edges of
the automaton B labeled by a. Let IE(B) =

⋃
a∈Σ

IE(B, a).

• outgoing if its starting point is marked while its end point is not, i.e. q1 ∈ M , q2 /∈ M . By
→

M(B, a) we denote the
set of all outgoing edges of the automaton B labeled by a.

• ingoing if its end point is marked while its starting point is not, i.e. q1 /∈ M , q2 ∈ M . By
←

M(B, a) we denote the
set of all ingoing edges of the automaton B labeled by a.

Lemma 5. After the action of the prefix wk−1, the initial vertex of every outgoing edge e = (q1, w[k], q2) labeled by
the letter w[k] holds a token.

Proof. Arguing by contradiction, suppose that the state q1 is empty after the action of wk−1. Then the state q2 belongs
to the set M by the definition of M(2, k), whence the edge e = (q1, w[k], q2) is inner, a contradiction. �

Lemma 6. After the action of the prefix wk−1, the initial vertex of every ingoing edge e = (q1, w[k], q2) labeled by
the letter w[k] holds a token.

Proof. Since the edge e is ingoing, the state q1 does not belong to the marked set M . Hence, the state q1 never becomes
empty. �

Proposition 7. For each letter a ∈ Σ , the numbers of ingoing and outgoing edges labeled by a in the automaton B
are equal.

Proof. Let M = QB\M be the complement of the marked set M . By the definition of M(1, k) (1 ≤ k ≤ `), after the
action of the word wk all empty states belong to the set M and hence all states of the set M are covered by tokens.
Therefore the number of tokens in M is equal to |M | and remains constant all the time.

For a given letter a, we denote by Ia and Oa the number of ingoing and respectively outgoing edges labeled by a.
Since the word w is n-full, there is a position i , 1 ≤ i ≤ `, such that w[i] = a.

Consider the action of the letterw[i] and check how it affects the number of the tokens in M . The number of tokens
leaving the set M is equal to Ia by Lemma 6. The number of tokens coming to the set M is equal to Oa by Lemma 5.
Any token in M which is removed after the action leaves the set M . Indeed, it moves along the edge (p, w[i], q)
which shares its end point q with another edge (r, w[i], q). The state q is not in M by Proposition 4.

We see that after the action of w[i] the number of tokens in M is equal to |M | + Oa − Ia and, on the other hand, it
is always equal to |M |. Therefore Oa = Ia . �

Now we are ready to extract from the automaton B a new automaton C = 〈QC ,Σ , δC 〉 . The state set of this new
automaton coincides with the marked set M of the automaton B and the transitions between their states are the inner
edges of the automaton B, i.e. QC = M and δC = IE(B). In general, the automaton C is not complete because the
automaton B may have outgoing edges.

We complete the automaton C to a DFA and simultaneously define two maps ψstart and ψend. To start with, we put
ψstart(e) = ψend(e) = e for each inner edge e ∈ IE(B) of the automaton B.

Now consider a letter a ∈ Σ . By Proposition 7 there is a bijection

ϕa :
→

M(B, a)→
←

M(B, a).

We fix such a bijection ϕa and do the following for each outgoing edge e = (q1, a, q2). Let ϕa(e) = (q3, a, q4).
It is an ingoing edge. We append a new edge f = (q1, a, q4) to the automaton C , connecting the starting point

I.V. Petrov / Theoretical Computer Science 391 (2008) 99–108 103

Fig. 3. Building a buffer automaton.

of e with the end point of ϕa(e). We call each such edge an outer edge of the automaton C . Then we define
ψstart(e) = ψend(ϕa(e)) = f .

By performing the described operation for each letter a ∈ Σ , we obtain a complete DFA which we still denote by
C . This should not lead to any confusion since from now on we shall use the completed version of C only.

The inner edges of the automaton B will be also called the inner edges of the automaton C . Now we define

IE(C , a) = {e = (q1, a, q2) | e is an inner edge in C }, IE(C) =
⋃
a∈Σ

IE(C , a),

↔

M(C , a) = {e = (q1, a, q2) | e is an outer edge in C },
↔

M(C) =
⋃
a∈Σ

↔

M(C , a).

Observe that QC = M ⊆ QB , and hence we can apply to any state q ∈ M the transition functions of both B and
C .

For each letter a ∈ Σ we have δC (•, a) = IE(C , a) ∪
↔

M(C , a) and δB(•, a)|M = {(q1, a, q2) ∈ δB(•, a)|q1 ∈

M} = IE(B, a) ∪
→

M(B, a).
Observe that the mappings

ψstart : IE(B, a) ∪
→

M(B, a)→ IE(C , a) ∪
↔

M(C , a)

and

ψend : IE(B, a) ∪
←

M(B, a)→ IE(C , a) ∪
↔

M(C , a)

are bijections. Both these bijections map inner edges to inner edges. The mapping ψstart maps outgoing edges to outer
edges and ψend maps ingoing edges to outer edges. The mapping ψstart preserves starting points of edges and ψend
preserves end points of edges.

Proposition 8. |QC | = |M | ≤ (2`− 1)(n − 1).

Proof. Since d fw(B) = n − 1, there are at most n − 1 empty states of B during the action of the word w on the
automaton B, that is |QB \ δB(QB, wk)| ≤ n − 1 for all k, 0 ≤ k ≤ `. Hence, the inequalities |M(1, k)| ≤ n − 1
and |M(2, k)| ≤ n − 1 hold for every k, 1 ≤ k ≤ `. The set M(2, 1) is empty. Thus,

|M | =

∣∣∣∣∣⋃̀
k=1

M(1, k) ∪
⋃̀
k=2

M(2, k)

∣∣∣∣∣ ≤ (2`− 1)(n − 1). �

Now we need an auxiliary construction. Let s = a1a2 · · · at ∈ Σ ∗ be an arbitrary word and a ∈ Σ be
an arbitrary letter. We define an automaton L (s, a). We start with the incomplete automaton whose state set is
QL = {b1, b2, . . . , bt+1} and whose edges are

(b1, a1, b2), (b2, a2, b3), . . . , (bt , at , bt+1), (bt+1, a, b1).

After that we complete the automaton to a permutation automaton over Σ in an arbitrary way. Finally, we remove the
edge (bt+1, a, b1). We call the incomplete automaton L (s, a) = 〈QL ,Σ , δL 〉 the buffer automaton of the word s
with the input–output letter a. The state b1 of the automaton L (s, a) is called the key state and is denoted by KS(L).

It is convenient to imagine that instead of the removed edge (bt+1, a, b1), the automaton L (s, a) has got two
‘open’ edges (•, a, b1) and (bt+1, a, •) with undefined starting and end points respectively as shown on Fig. 3. We
shall use such undefined starting and end points to attach buffer automata to the automaton C .

104 I.V. Petrov / Theoretical Computer Science 391 (2008) 99–108

Fig. 4. Attaching a buffer automaton.

Let e = (q1, a, q2) be an outer edge of the automaton C and let L (s, a) = 〈QL ,Σ , δL 〉 be an arbitrary buffer
automaton whose input–output letter is a.

Then we define the operation C
e
⊕L (s, a) of attaching the buffer automaton L (s, a) to the DFA C instead of the

edge e (Fig. 4). The result of this operation is a new automaton T = 〈QT ,Σ , δT 〉 defined as follows:

QT = QC ∪ QL = QC ∪ {b1, b2, . . . , bt+1}

δT (q, c) =



δC (q, c), if q ∈ QC \ {q1}

δC (q, c), if q = q1, c 6= a
b1, if q = q1, c = a
δL (q, c), if q ∈ {b1, b2, . . . , bt }

δL (q, c), if q = bt+1, c 6= a
q2, if q = bt+1, c = a.

We call the state q2 the output of the attached buffer automaton L (s, a) and we denote this state by outL .

Let {(pi , ai , qi) = ei | i ∈ {1, . . . , r}} ⊆
↔

M(C) be a subset of the set of outer edges of C and let {xi | xi ∈ Σ ∗}ri=1
be a set of words. We can attach buffer automata simultaneously instead of r outer edges of the automaton C . We
denote the result of this operation by

D = 〈QD ,Σ , δD 〉 = C
e1
⊕L1(x1, a1)

e2
⊕ · · ·

er
⊕Lr (xr , ar). (1)

The automaton D depends on the choice of the set of outer edges ei and the choice of the set of words xi . Therefore
we have a series of automata of the form (1).

Proposition 9. Any automaton D of the form (1) is a DFA.

Proof. It is obvious due to the definitions of a buffer automaton and the operation of attaching a buffer automaton. �

The next lemma gives an important property of these automata.

Lemma 10. Every DFA D of the form (1) satisfies the condition

QD \ δD (QD , wk) = QB \ δB(QB, wk)

for every k, 0 ≤ k ≤ `.

Proof. Let M = QB \ M . Let L =
r⋃

i=1
QLi , where QLi is the state set of the buffer automaton Li . Then the state

sets of the automata B and D can be represented as QB = M ∪ M and QD = M ∪ L .
Let Dk = QD \ δD (QD , wk), Bk = QB \ δB(QB, wk) be the sets of empty states of the automata D

and respectively B after the action of the prefix wk . Arguing by contradiction, we choose the minimal integer k
(0 ≤ k ≤ `) with the property Dk 6= Bk . Then there is a state q ∈ (Bk \ Dk) ∪ (Dk \ Bk). It is clear that

q ∈ (Bk \ Dk) ∪ (Dk \ Bk) ⊆ Bk ∪ Dk ⊆ M ∪ M ∪ L .

I.V. Petrov / Theoretical Computer Science 391 (2008) 99–108 105

First we show that q /∈ L , then that q /∈ M and finally that q /∈ M . This will yield a contradiction as desired.

Step 1. We prove that q /∈ L .
It is clear that k 6= 0, since w0 is the empty word and D0 = ∅ = B0. Hence by the choice of k we have

Dk−1 = Bk−1 = QB \ δB(QB, wk−1) = M(1, k − 1) ⊆ M.

In particular, all states of the buffer automata Li (1 ≤ i ≤ r) are covered by tokens after the action of wk−1 on the set
QD , because QLi ∩ M = ∅.

Let wk = wk−1a. Consider an arbitrary buffer automaton Li attached instead of the edge ei . If ei = (pi , b, qi),
b 6= a, then the automaton Li is covered by tokens after the action of the word wk on D because a acts as a
permutation on the set QLi by the definition of buffer automata.

If ei = (pi , a, qi), then there is an outgoing edge (pi , a, ri) = ψ−1
start(ei) of B corresponding to ei . We have

pi ∈ δB(QB, wk−1) by Lemma 5. Hence pi is covered by a token in D after the action of wk−1. Therefore the
transformation δD (•, a) pushes the token into QLi . There is only one edge fi = (si , a, qi) outgoing from the set QLi

in D and there is no pair of edges labeled by a with a common end point in Li . It means that the number of tokens in
QLi is not decreasing during the action of a and the transformation δD (•, a) pops the token from QLi via the edge fi .
Li is covered after the action of wk and the state qi is also covered. That is QLi ⊆ δD (QD , wk), qi ∈ δD (QD , wk).

Therefore, q /∈ L .

Step 2. We prove that q /∈ M . Indeed, by the definition of the set M(1, k), we have M ⊆ δB(QB, wk) whence
q /∈ M .

Step 3. We prove that q /∈ M .
Suppose that q ∈ M . We divide the proof into two cases.
Case 1. The state q is the end point of some ingoing edge f = (p, a, q) of the automaton B.
The state p ∈ M is covered by a token after the action of wk−1 by Lemma 6. Hence q is covered by a token after

the action of wk in the automaton B. Thus, q /∈ Bk . The edge ψend(f) = (s, a, q) is an outer edge of the automaton.
If this edge is replaced in D by a buffer automaton, then, as we have shown on Step 1, q ∈ δD (QD , wk), that is,

q /∈ Dk . This contradicts the condition q ∈ Bk ∪ Dk .
If the edge ψend(f) = (s, a, q) is not replaced in D by a buffer automaton, then the state s is the starting point of an

outgoing edge ψ−1
start(ψend(f)). Hence by Lemma 5 the state s is covered after the action of wk−1 in the automaton B.

In view of the equality Bk−1 = Dk−1 this implies that the state s is covered after the action of wk−1 in the automaton
D . Therefore q is covered after the action of wk in the automaton D , that is q /∈ Dk . This again contradicts the
condition q ∈ Bk ∪ Dk .

Case 2. There is no ingoing edge labeled by the letter a in B with the end point q.
This means that there is no outer edge labeled by a with the end point q in C . Therefore any edge e = (p, a, q)

in B or in D is an inner edge. Thus, p ∈ M . The sets of inner edges of the automata B and D coincide. If
there is an edge e = (p, a, q) such that p /∈ Bk−1 = Dk−1, then q /∈ Bk and q 6∈ Dk . If there is no edge
e = (p, a, q) such that p /∈ Bk−1 = Dk−1, then q ∈ Bk and q ∈ Dk . Both these conclusions contradict the
condition q ∈ (Bk \ Dk) ∪ (Dk \ Bk). �

Corollary 11. For any DFA D of the form (1), d fw(D) = d fw(B) = n − 1.

The last step of the proof consists in choosing an n-compressible automaton D of the form (1).
Let p ∈ QB and v ∈ Σ ∗. We call the sequence of edges

tr(p, v) = {(δB(p, vi−1), v[i], δB(p, vi))}
|v|
i=1

the trace of the word v from the state p.

Lemma 12. Suppose p ∈ QB , v ∈ Σ ∗ and D is a DFA of the form (1). If tr(p, v) ⊆ IE(B), then δB(p, v) =
δD (p, v).

Proof. Since tr(p, v) ⊆ IE(B), the path tr(p, v) contains no outgoing edges. Hence, the edges
(δB(p, vi−1), v[i], δB(p, vi)) and (δD (p, vi−1), v[i], δD (p, vi)) coincide for every i , 1 ≤ i ≤ |v|. �

106 I.V. Petrov / Theoretical Computer Science 391 (2008) 99–108

Proposition 13. There exists an n-compressible DFA D = 〈QD ,Σ , δD 〉 of the form (1) such that d fw(D) < n and
|QD | ≤ |M | + n + 1.

Proof. By Corollary 11, d fw(D) = n− 1 for any automaton D of the form (1). Our aim is to choose an automaton D
of the form (1), two different states G, H ∈ δD (QD , w) and a word Z such that δD (G, Z) = δD (H, Z). This means
that the states G and H are covered by tokens after the action of w and the word Z removes one of the tokens. Hence
the automaton D is n-compressible. If we find G, H, Z and D = 〈QD ,Σ , δD 〉 , where |QD | ≤ |M | + n+ 1, then we
complete the proof of the theorem.

Recall that d fw(B) = n − 1 and the automaton B is n-compressible. It means that there exists a word v ∈ Σ ∗

such that d fv(B) ≥ n. Note that d fwv(B) ≥ n. Then there are two different states p, r ∈ δB(QB, w) (p 6= r)
and a word u = a1a2 · · · ak ∈ Σ ∗ such that δB(p, u) = δB(r, u). Without loss of generality, we may assume that
δB(p, uk−1) 6= δB(r, uk−1). Let q = δB(p, u). Applying Proposition 4 to the states δB(p, uk−1) and δB(r, uk−1)

and the letter ak we obtain that q ∈ M .
Let N = { j | 0 ≤ j ≤ |u|, δB(p, u j) /∈ M or δB(r, u j) /∈ M}. If N = ∅, i.e. tr(p, u) ⊆ IE(B) and

tr(r, u) ⊆ IE(B); then by Lemma 12, δC (r, u) = δB(r, u) = δB(p, u) = δC (p, u). This means that we can put
D = C , G = p, H = r and Z = u. Note that |QD | = |M | ≤ |M | + n + 1.

Suppose that N 6= ∅. We define j = max N . Note that j < |u| because δB(p, u) = δB(r, u) ∈ M . Let
p1 = δB(p, u j), p2 = δB(p, u j+1), r1 = δB(r, u j), r2 = δB(r, u j+1), a = u[j + 1]. We denote the word
a j+2 . . . ak by v, whence u = u j av.

Case 1. Assume that p1 /∈ M and r1 /∈ M .
Then e1 = (p1, a, p2) and e2 = (r1, a, r2) are different ingoing edges of the automaton B. Let f1 = ψend(e1)

and f2 = ψend(e2) be the corresponding outer edges of the automaton C . Consider two identical buffer automata

L1(λ, a) and L2(λ, a) of the empty word λ with the input–output letter a. Let D = C
f1
⊕L1(λ, a)

f2
⊕L2(λ, a). Since

the mapping ψend preserves the end points of edges, we have outL1 = p2 and outL2 = r2. Hence

δD (KS(L1), λav) = δD (outL1, v) = δD (p2, v)
Lemma 12
= δB(p2, v) = q

and

δD (KS(L2), λav) = δD (outL2, v) = δD (r2, v)
Lemma 12
= δB(r2, v) = q.

Since KS(L1) /∈ QB and KS(L2) /∈ QB , we have KS(L1) ∈ δD (QD , w) and KS(L2) ∈ δD (QD , w) by Lemma 10.
Note that |QD | = |M | + 2 ≤ |M | + n + 1. Now we can put G = KS(L1), H = KS(L2) and Z = v.

Case 2. Assume that exactly one of the states p1 and r1 does not belong to the set M . Without loss of generality
we suppose that p1 ∈ M while r1 /∈ M .

Case 2a. Assume that there exists a word x ∈ Σ ∗ and a state s ∈ δB(QB, w) such that tr(s, x) ⊆ IE(B) and
δB(s, x) = p1. We choose the pair (x, s) such that the word x is the shortest with this property. Then the path tr(s, x)
visits each of its state only once. Furthermore, δB(s, xi) /∈ δB(QB, w) for each i , 1 ≤ i ≤ |x |.

Since |QB \ δB(QB, w)| = n − 1, we obtain |x | ≤ n − 1. Note that the edge e = (r1, a, r2) is an ingoing

edge of B. Let f = ψend(e) be the corresponding outer edge of C . We put D = C
f
⊕L (x, a). Note that

|QD | ≤ |M | + n ≤ |M | + n + 1.
Since KS(L) /∈ QB , we have KS(L) ∈ δD (QD , w) by Lemma 10. Note that s ∈ QD , because s ∈ M . Since

s ∈ δB(QB, w), we have

s /∈ QB \ δB(QB, w)
Lemma 10
= QD \ δD (QD , w),

whence s ∈ δD (QD , w).
By the definition of the state s we have

δD (s, xav)
Lemma 12
= δB(s, xav) = δB(p1, av) = q.

By the definition of buffer automata we obtain that

δD (KS(L), xav) = δD (outL , v) = δD (r2, v)
Lemma 12
= δB(r2, v) = q.

I.V. Petrov / Theoretical Computer Science 391 (2008) 99–108 107

Now we can put G = KS(L), H = s and Z = xav.

Case 2b. Assume that there is no word x ∈ Σ ∗ and no state s ∈ δB(QB, w) such that tr(s, x) ⊆ IE(B) and
δB(s, x) = p1.

Suppose that tr(p, u j) ⊆ IE(B). Then we have a pair (u j , p) such that tr(p, u j) ⊆ IE(B) and δB(p, u j) = p1.
This contradicts the assumption of this case. Hence, tr(p, u j) 6⊆ IE(B). This means that there is a triple (b, x, s) such
that b ∈ Σ , x ∈ Σ ∗, s ∈ QB \M , tr(δB(s, b), x) ⊆ IE(B) and δB(s, bx) = p1. We fix a triple (b, x, s) such that the
word x is the shortest with these properties. Let t = δB(s, b). Then the path tr(t, x) visits each of its state only once.

Note that ∀i , 0 ≤ i ≤ |x |, δB(t, xi) /∈ δB(QB, w). Otherwise, there is a number i such that δB(t, xi) ∈

δB(QB, w), whence the pair (x[i + 1]x[i + 2] . . . , δB(t, xi)) contradicts the assumption of this case.
Since |QB \ δB(QB, w)| = n − 1, we obtain |x | ≤ n − 2.
Note that the edges e1 = (s, b, t) and e2 = (r1, a, r2) are ingoing edges of the automaton B.

Subcase 2b1. Assume that e1 6= e2.
Let f1 = ψend(e1) and f2 = ψend(e2) be the corresponding outer edges of the automaton C . Consider the buffer

automata L1(λ, b) and L2(bx, a). We put D = C
f1
⊕L1

f2
⊕L2. Then |QD | ≤ |M | + n + 1.

Since KS(L1) /∈ QB and KS(L2) /∈ QB , we have KS(L1) ∈ δD (QD , w) and KS(L2) ∈ δD (QD , w) by
Lemma 10.

By the definition of buffer automata we obtain that

δD (KS(L1), λbxav) = δD (outL1, xav) = δD (t, xav)
Lemma 12
= δB(t, xav).

By the choice of the states s and t we have

δB(t, xav) = δB(s, bxav) = δB(p1, av) = q.

By the definition of buffer automata we obtain that

δD (KS(L2), bxav) = δD (outL2, v) = δD (r2, v)
Lemma 12
= δB(r2, v) = q.

Now we can put G = KS(L1), H = KS(L2) and Z = bxav.

Subcase 2b2. Assume that e1 = e2, i.e. s = r1, t = r2, b = a.
Let f = ψend(e1) be the corresponding outer edge of the automaton C . Consider the buffer automaton L (ax, a).

We put D = C
f
⊕L . Then |QD | ≤ |M | + n ≤ |M | + n + 1.

Let o = δB(KS(L), ax). Since KS(L) /∈ QB and o /∈ QB , we have KS(L) ∈ δD (QD , w) and o ∈ δD (QD , w)

by Lemma 10.
By the definition of buffer automata we obtain that

δD (o, axav) = δD (outL , xav) = δD (t, xav)
Lemma 12
= δB(t, xav).

By the choice of the states s and t we have

δB(t, xav) = δB(s, axav) = δB(p1, av) = q.

By the definition of a buffer automaton we obtain that

δD (KS(L), axav) = δD (outL , v) = δD (r2, v)
Lemma 12
= δB(r2, v) = q.

Hence, δD (o, axav) = δD (KS(L), axav). Thus, we can put G = KS(L), H = o and Z = axav. �

By combining Lemma 2, Propositions 8 and 13, we obtain the proof of Theorem 1.

108 I.V. Petrov / Theoretical Computer Science 391 (2008) 99–108

Acknowledgement

This work was supported by the Russian Foundation for Basic Research, grant 05-01-00540.

References

[1] D.S. Ananichev, A. Cherubini, M.V. Volkov, An inverse automata algorithm for recognizing 2-collapsing words, in: M. Ito, M. Toyama (Eds.),
Developments in Language Theory, in: Lect. Notes Comp. Sci., vol. 2450, Springer-Verlag, Berlin, Heidelberg, New York, 2003, pp. 270–282.

[2] D.S. Ananichev, A. Cherubini, M.V. Volkov, Image reducing words and subgroups of free groups, Theoret. Comput. Sci. 307 (2003) 77–92.
[3] D.S. Ananichev, I.V. Petrov, M.V. Volkov, Collapsing words: A progress report, Internat. J. Found. Comput. Sci. 17 (2006) 507–518.
[4] S. Margolis, J.-E. Pin, M.V. Volkov, Words guaranteeing minimum image, Internat. J. Found. Comput. Sci. 15 (2004) 259–276.
[5] A. Mateesku, A. Salomaa, Aspects of classical language theory, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. I.

Word. Language, Grammar, Springer-Verlag, Berlin, Heidelberg, New York, 1997, pp. 175–251.
[6] E.V. Pribavkina, On some properties of the Language of 2-collapsing words, Internat. J. Found. Comput. Sci. 17 (2006) 665–676.
[7] N. Sauer, M.G. Stone, Composing functions to reduce image size, Ars Combin. 31 (1991) 171–176.

	An algorithm for recognition of n-collapsing words
	Main result and its application
	The proof of mainthmTheorem Theorems
	Acknowledgement
	References

