

Available online at www.sciencedirect.com

Theoretical Computer Science

Theoretical Computer Science 391 (2008) 99-108

www.elsevier.com/locate/tcs

An algorithm for recognition of *n*-collapsing words

I.V. Petrov

Department of Mathematics and Mechanics, Ural State University, 620083 Ekaterinburg, Russia

Abstract

A word w over a finite alphabet Σ is *n*-collapsing if for an arbitrary deterministic finite automaton $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$, the inequality $|\delta(Q, w)| \le |Q| - n$ holds provided that $|\delta(Q, u)| \le |Q| - n$ for some word $u \in \Sigma^+$ (depending on \mathscr{A}). We prove that the property of *n*-collapsing is algorithmically recognizable for any given positive integer *n*. We also prove that the language of all *n*-collapsing words is context-sensitive.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Deterministic finite automaton; n-collapsing word; Context-sensitive language

1. Main result and its application

Let $\mathscr{A} = \langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}} \rangle$ be a deterministic finite automaton (DFA), where $Q_{\mathscr{A}}$ denotes the state set, Σ stands for the input alphabet, and $\delta_{\mathscr{A}} : Q_{\mathscr{A}} \times \Sigma \to Q_{\mathscr{A}}$ is the transition function defining an action of the letters in Σ on $Q_{\mathscr{A}}$. This action can be uniquely extended to an action $Q_{\mathscr{A}} \times \Sigma^* \to Q_{\mathscr{A}}$ of the free monoid Σ^* over Σ with the empty word λ ; the latter action is still denoted by $\delta_{\mathscr{A}}$. Given a word $w \in \Sigma^*$ and a non-empty subset $X \subseteq Q_{\mathscr{A}}$, we write $\delta_{\mathscr{A}}(X, w)$ for the set $\{\delta_{\mathscr{A}}(x, w) \mid x \in X\}$ and say that the word w acts on the set X. The difference $df_w(\mathscr{A}) = |Q_{\mathscr{A}}| - |\delta_{\mathscr{A}}(Q_{\mathscr{A}}, w)|$ is called the *deficiency of the action of w on the automaton* \mathscr{A} .

Let *n* be a positive integer. A DFA $\mathscr{A} = \langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}} \rangle$ is said to be *n*-compressible if there is a word $w \in \Sigma^*$ such that $df_w(\mathscr{A}) \ge n$. The word *w* is then called *n*-compressing with respect to \mathscr{A} . We note that there is a straightforward algorithm that verifies whether a given DFA is *n*-compressible; the time complexity of this algorithm is a quadratic polynomial of the number of states of the DFA.

A word $w \in \Sigma^*$ is said to be *n*-collapsing if w is *n*-compressing with respect to every *n*-compressible DFA whose input alphabet is Σ . In other words, a word $w \in \Sigma^*$ is *n*-collapsing if for any DFA $\mathscr{A} = \langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}} \rangle$ we have $df_w(\mathscr{A}) \ge n$ whenever \mathscr{A} is *n*-compressible. Thus, such a word is a 'universal tester' whose action on the state set of an arbitrary DFA with a fixed input alphabet exposes whether or not the automaton is *n*-compressible.

It is known that *n*-collapsing words exist for every *n* and over every finite alphabet Σ , see [7, Theorem 3.3] or [4, Theorem 2]. As the existence has been established, the next crucial step is to master, for each positive integer *n*, an algorithm that recognizes whether a given word is *n*-collapsing. This problem is non-trivial whenever n > 1 and $|\Sigma| > 1$ which will be assumed throughout. In [2], where the recognition problem was first formulated, it was solved

E-mail address: ilja_petrov@list.ru.

^{0304-3975/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2007.10.034

for the case n = 2. A more geometric version of this solution was presented in [1]. The algorithm in [1] produces for a given word $w \in \Sigma^*$ a finite number of inverse automata such that w is not 2-collapsing if and only if at least one of these inverse automata can be completed to a 2-compressible DFA $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ with |Q| < |w| and $df_w(\mathscr{A}) = 1$ (here and below |w| stands for length of the word w).

No analogue of the algorithms from [1,2] is known for *n*-collapsing words with n > 2. Therefore, the author has tried another approach aiming to show that the language $C_n(\Sigma)$ of all *n*-collapsing words over Σ is decidable in principle, i.e. $C_n(\Sigma)$ is a recursive subset of Σ^* . For this, it suffices to find, for each positive integer *n*, a computable function $f_n : \mathbb{N} \to \mathbb{N}$ such that a word $w \in \Sigma^*$ is *n*-collapsing provided $df_w(\mathscr{A}) \ge n$ for every *n*-compressible DFA $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ with $|Q| \le f_n(|w|)$. Indeed, if such a function exists, then, given a word *w*, one can calculate the value $m = f_n(|w|)$ and then check the above condition through all automata with at most *m* states. Since there are only finitely many such automata with the input alphabet Σ , the procedure will eventually stop. If in the course of the procedure one encounters an *n*-compressible DFA \mathscr{A} with $df_w(\mathscr{A}) < n$, then *w* is not *n*-collapsing by the definition. If no such automaton is found, then *w* is *n*-collapsing by the choice of the function f_n .

From the results of [1] it follows that, for n = 2, the function $f_2(|w|) = \max\{3, |w| - 1\}$ satisfies the desired property. The author first managed to show that the functions $f_n(|w|) = 3|w|(n-1) + n + 1$ satisfy the desired property for every *n*. This result was announced (with an outline of the proof) in the survey paper [3]. Here we improve this result by showing that some smaller functions, namely $f_n(|w|) = 2|w|(n-1) + 2$, do the job as well. Thus, the main result of the present paper is the following theorem.

Theorem 1. Let $w \in \Sigma^*$ be a word which is not n-collapsing. Then there exists an n-compressible automaton $\mathscr{D} = \langle Q_{\mathscr{D}}, \Sigma, \delta_{\mathscr{D}} \rangle$ with $|Q_{\mathscr{D}}| \leq 2|w|(n-1) + 2$ such that $df_w(\mathscr{D}) < n$.

Since the function $f_n(|w|) = 2|w|(n-1) + 2$ is linear (with respect to |w|), we immediately obtain a nondeterministic linear space and polynomial time algorithm recognizing the complement of the language $C_n(\Sigma)$ of all *n*-collapsing words over Σ : the algorithm simply makes a guess consisting of a DFA $\mathscr{A} = \langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}} \rangle$ with $|Q_{\mathscr{A}}| \leq 2|w|(n-1) + 2$ and then verifies that \mathscr{A} is *n*-compressible and that *w* is not *n*-compressing with respect to \mathscr{A} . By classical results of formal language theory (cf. [5, Sections 2.4 and 2.5]), this implies that the language $C_n(\Sigma)$ is context-sensitive. We mention that Pribavkina [6] has shown that the language $C_2(\Sigma)$ with $|\Sigma| = 2$ is not context-free. For the case when either n > 2 or $|\Sigma| > 2$, the problem of locating the language $C_n(\Sigma)$ with respect to the Chomsky hierarchy still remains open.

2. The proof of Theorem 1

It is convenient for us to think of each DFA $\mathscr{A} = \langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}} \rangle$ as a digraph with the vertex set $Q_{\mathscr{A}}$. We denote by (p, a, q) the edge from $p \in Q_{\mathscr{A}}$ to $q \in Q_{\mathscr{A}}$ labeled by the letter $a \in \Sigma$. We shall identify the transition function $\delta_{\mathscr{A}} : Q_{\mathscr{A}} \times \Sigma \to Q_{\mathscr{A}}$ with its graph $\{(v, a, \delta_{\mathscr{A}}(v, a)) \mid v \in Q_{\mathscr{A}}, a \in \Sigma\}$; that is, the expressions $(p, a, q) \in \delta_{\mathscr{A}}$ and $\delta_{\mathscr{A}}(p, a) = q$ mean the same. We denote the set $\{(v, a, \delta_{\mathscr{A}}(v, a)) | v \in Q_{\mathscr{A}}\}$ by $\delta_{\mathscr{A}}(\bullet, a)$, i.e. $\delta_{\mathscr{A}}(\bullet, a)$ is the set of all edges labeled by a; on the other hand, $\delta_{\mathscr{A}}(\bullet, a)$ is the transformation of the set $Q_{\mathscr{A}}$ under applying the letter a.

We need some notations and definitions. Let u be a word in Σ^* . We denote by u[k] and u_k the kth letter and the prefix of length k of the word u ($k \le |u|$). That is if $u = a_1 a_2 \dots a_t$, then $u[k] = a_k$ and $u_k = a_1 a_2 \dots a_k$ respectively. Furthermore, by definition put $u_0 = \lambda$.

If u, v are words over Σ and u = v'vv'' for some $v', v'' \in \Sigma^*$, we say that v is a *factor* of u. It is convenient to have a name for the property of a word $w \in \Sigma^*$ to have all words of length n among its factors. We say that such a word w is *n*-full. We say that an *n*-compressible automaton \mathscr{A} is *n*-proper if no word of length n is *n*-compressing with respect to \mathscr{A} .

The following lemma is a direct corollary of [2, Lemma 2.1].

Lemma 2. If a word w is not n-full, then there is an n-compressible automaton $\mathscr{A} = \langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}} \rangle$ such that $|Q_{\mathscr{A}}| \leq |w|$ and $df_w(\mathscr{A}) < n$.

In view of Lemma 2, in the sequel we consider only *n*-full words. Fix an *n*-full word $w \in \Sigma^*$ which is not *n*-collapsing and consider an *n*-compressible DFA $\mathscr{A} = \langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}} \rangle$ such that $df_w(\mathscr{A}) < n$. The word *w* has every word of length *n* as a factor whence the automaton \mathscr{A} is *n*-proper. Suppose $df_w(\mathscr{A}) = k < n$. In this case we extend the automaton \mathscr{A} to a new automaton $\mathscr{B} = \langle Q_{\mathscr{B}}, \Sigma, \delta_{\mathscr{B}} \rangle$ with $df_w(\mathscr{B}) = n - 1$. For this, we append n - k new states

Fig. 1. Redistributing tokens under the action of the letter a.

Fig. 2. Marking induced by the transition shown in Fig. 1.

 q_1, \ldots, q_{n-k} and extend the transition function to these new states by letting $\delta_{\mathscr{B}}(q_i, a) = q_1$ for all $i = 1, \ldots, n-k$ and all $a \in \Sigma$. The following lemma is a direct corollary of the definition of \mathscr{B} .

Lemma 3. The DFA \mathscr{B} is an n-proper and n-compressible automaton, and $df_w(\mathscr{B}) = n - 1$.

Now assume that some of the states of the DFA \mathscr{B} are covered by tokens and the action of any letter $a \in \Sigma$ redistributes the tokens according to the following rule: a state $q \in Q_{\mathscr{B}}$ will be covered by a token after the action of a if and only if there exists a state $q' \in Q_{\mathscr{B}}$ such that $\delta_{\mathscr{B}}(q', a) = q$ and q' was covered by a token before the action. In more 'visual' terms, the rule amounts to saying that tokens slide along the edges labeled by a and, whenever several tokens arrive at the same state, all but one of them are removed. Fig. 1 illustrates this rule: its right part shows how tokens are distributed over the state set of a DFA after completing the action of the letter a on the distribution shown on the left. It is convenient to call a state *empty* if it is not currently covered by a token.

Let $\ell = |w|$. We cover all states in $Q_{\mathscr{B}}$ by tokens and let the letters $w[1], \ldots, w[\ell]$ act in succession. On the *k*th step of this procedure we mark all elements of the following sets of states:

$$\begin{split} M(1,k) &= \mathcal{Q}_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(\mathcal{Q}_{\mathscr{B}}, w_{k}); \\ M(2,k) &= \delta_{\mathscr{B}}(\mathcal{Q}_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(\mathcal{Q}_{\mathscr{B}}, w_{k-1}), w[k]) = \delta_{\mathscr{B}}(M(1,k-1), w[k]). \end{split}$$

The meaning of these sets can be easily explained in terms of the distribution of tokens before and after the action of the letter w[k]. The set M(1, k) consists of empty states after the action of the letter w[k]. The set M(2, k) is the set of all states to which the letter w[k] brings states that had been empty before the action of w[k]. Note that $M(2, 1) = \emptyset$ because there is no empty state before the action of the first letter of w.

For example, assume that the transition shown in Fig. 1 represents the *k*th step of the above procedure (so that w[k] = a). Then three states get marks as shown on Fig. 2. Indeed, $M(2, k) = \{4\}$ because 3 was the only empty state before the action of *a* and $\delta_{\mathscr{B}}(3, a) = 4$. Further, $M(1, k) = \{2, 5\}$.

Put $M = \bigcup_{1 \le k \le \ell} (M(1, k) \cup M(2, k))$. We call *M* the set of marked states of the DFA \mathscr{B} or the marked set for short.

The next proposition registers an important property of the marked set.

Proposition 4. Let $a \in \Sigma$, $p, r \in Q_{\mathscr{B}}$ and $p \neq r$. If $\delta_{\mathscr{B}}(p, a) = \delta_{\mathscr{B}}(r, a)$, then $\delta_{\mathscr{B}}(p, a) \in M$.

Proof. Since the word w is n-full, it has at least one factor a^n . Let $w = w_i a^n v$. The automaton \mathscr{B} is n-proper whence $df_{a^n}(\mathscr{B}) \leq n-1$. Therefore the non-increasing chain $Q_{\mathscr{B}} \supseteq \delta_{\mathscr{B}}(Q_{\mathscr{B}}, a) \supseteq \delta_{\mathscr{B}}(Q_{\mathscr{B}}, a^2) \supseteq \cdots$ stabilizes after at most n-1 steps whence a acts on the set $\delta_{\mathscr{B}}(Q_{\mathscr{B}}, a^{n-1})$ as a permutation.

Let $q = \delta_{\mathscr{B}}(p, a) = \delta_{\mathscr{B}}(r, a)$. If $q \notin \delta_{\mathscr{B}}(Q_{\mathscr{B}}, a^{n-1})$ then

$$q \in Q_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(Q_{\mathscr{B}}, a^{n-1}) \subseteq Q_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w_i a^{n-1}) = M(1, i+n-1) \subseteq M.$$

Now assume $q \in \delta_{\mathscr{B}}(Q_{\mathscr{B}}, a^{n-1})$. The states p and r cannot simultaneously belong to $\delta_{\mathscr{B}}(Q_{\mathscr{B}}, a^{n-1})$ because a acts as a permutation on this set while $\delta_{\mathscr{B}}(p, a) = \delta_{\mathscr{B}}(r, a)$. Without loss of generality, assume that $p \notin \delta_{\mathscr{B}}(Q_{\mathscr{B}}, a^{n-1})$. Then

$$p \in Q_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w_i a^{n-1}) \subseteq M(1, i+n-1).$$

Therefore $q \in M(2, i + n) \subseteq M$. \Box

An edge $e = (q_1, a, q_2)$ of the automaton \mathscr{B} is called:

- *inner* if it connects two marked states of \mathscr{B} , i.e. $q_1, q_2 \in M$. By $IE(\mathscr{B}, a)$ we denote the set of all inner edges of the automaton \mathscr{B} labeled by a. Let $IE(\mathscr{B}) = \bigcup_{i=1}^{n} IE(\mathscr{B}, a)$.
- *outgoing* if its starting point is marked while its end point is not, i.e. $q_1 \in M$, $q_2 \notin M$. By $\vec{M}(\mathcal{B}, a)$ we denote the set of all outgoing edges of the automaton \mathcal{B} labeled by a.
- *ingoing* if its end point is marked while its starting point is not, i.e. $q_1 \notin M$, $q_2 \in M$. By $M(\mathscr{B}, a)$ we denote the set of all ingoing edges of the automaton \mathscr{B} labeled by a.

Lemma 5. After the action of the prefix w_{k-1} , the initial vertex of every outgoing edge $e = (q_1, w[k], q_2)$ labeled by the letter w[k] holds a token.

Proof. Arguing by contradiction, suppose that the state q_1 is empty after the action of w_{k-1} . Then the state q_2 belongs to the set *M* by the definition of M(2, k), whence the edge $e = (q_1, w[k], q_2)$ is inner, a contradiction. \Box

Lemma 6. After the action of the prefix w_{k-1} , the initial vertex of every ingoing edge $e = (q_1, w[k], q_2)$ labeled by the letter w[k] holds a token.

Proof. Since the edge *e* is ingoing, the state q_1 does not belong to the marked set *M*. Hence, the state q_1 never becomes empty. \Box

Proposition 7. For each letter $a \in \Sigma$, the numbers of ingoing and outgoing edges labeled by a in the automaton \mathscr{B} are equal.

Proof. Let $\overline{M} = Q_{\mathscr{B}} \setminus M$ be the complement of the marked set M. By the definition of M(1, k) $(1 \le k \le \ell)$, after the action of the word w_k all empty states belong to the set M and hence all states of the set \overline{M} are covered by tokens. Therefore the number of tokens in \overline{M} is equal to $|\overline{M}|$ and remains constant all the time.

For a given letter *a*, we denote by I_a and O_a the number of ingoing and respectively outgoing edges labeled by *a*. Since the word *w* is *n*-full, there is a position *i*, $1 \le i \le \ell$, such that w[i] = a.

Consider the action of the letter w[i] and check how it affects the number of the tokens in M. The number of tokens leaving the set \overline{M} is equal to I_a by Lemma 6. The number of tokens coming to the set \overline{M} is equal to O_a by Lemma 5. Any token in \overline{M} which is removed after the action leaves the set \overline{M} . Indeed, it moves along the edge (p, w[i], q) which shares its end point q with another edge (r, w[i], q). The state q is not in \overline{M} by Proposition 4.

We see that after the action of w[i] the number of tokens in M is equal to $|M| + O_a - I_a$ and, on the other hand, it is always equal to $|\overline{M}|$. Therefore $O_a = I_a$. \Box

Now we are ready to extract from the automaton \mathscr{B} a new automaton $\mathscr{C} = \langle Q_{\mathscr{C}}, \Sigma, \delta_{\mathscr{C}} \rangle$. The state set of this new automaton coincides with the marked set M of the automaton \mathscr{B} and the transitions between their states are the inner edges of the automaton \mathscr{B} , i.e. $Q_{\mathscr{C}} = M$ and $\delta_{\mathscr{C}} = IE(\mathscr{B})$. In general, the automaton \mathscr{C} is not complete because the automaton \mathscr{B} may have outgoing edges.

We complete the automaton \mathscr{C} to a DFA and simultaneously define two maps ψ_{start} and ψ_{end} . To start with, we put $\psi_{\text{start}}(e) = \psi_{\text{end}}(e) = e$ for each inner edge $e \in IE(\mathscr{B})$ of the automaton \mathscr{B} .

Now consider a letter $a \in \Sigma$. By Proposition 7 there is a bijection

 $\varphi_a: \vec{M}(\mathscr{B}, a) \to \overset{\leftarrow}{M}(\mathscr{B}, a).$

We fix such a bijection φ_a and do the following for each outgoing edge $e = (q_1, a, q_2)$. Let $\varphi_a(e) = (q_3, a, q_4)$. It is an ingoing edge. We append a new edge $f = (q_1, a, q_4)$ to the automaton \mathscr{C} , connecting the starting point

Fig. 3. Building a buffer automaton.

of *e* with the end point of $\varphi_a(e)$. We call each such edge an *outer edge of the automaton* \mathscr{C} . Then we define $\psi_{\text{start}}(e) = \psi_{\text{end}}(\varphi_a(e)) = f$.

By performing the described operation for each letter $a \in \Sigma$, we obtain a complete DFA which we still denote by \mathscr{C} . This should not lead to any confusion since from now on we shall use the completed version of \mathscr{C} only.

The inner edges of the automaton \mathscr{B} will be also called the *inner edges of the automaton* \mathscr{C} . Now we define

$$IE(\mathscr{C}, a) = \{e = (q_1, a, q_2) \mid e \text{ is an inner edge in } \mathscr{C}\}, \quad IE(\mathscr{C}) = \bigcup_{a \in \Sigma} IE(\mathscr{C}, a),$$
$$\tilde{M}(\mathscr{C}, a) = \{e = (q_1, a, q_2) \mid e \text{ is an outer edge in } \mathscr{C}\}, \quad \tilde{M}(\mathscr{C}) = \bigcup_{a \in \Sigma} \tilde{M}(\mathscr{C}, a).$$

Observe that $Q_{\mathscr{C}} = M \subseteq Q_{\mathscr{B}}$, and hence we can apply to any state $q \in M$ the transition functions of both \mathscr{B} and \mathscr{C} .

For each letter $a \in \Sigma$ we have $\delta_{\mathscr{C}}(\bullet, a) = IE(\mathscr{C}, a) \cup \vec{M}(\mathscr{C}, a)$ and $\delta_{\mathscr{B}}(\bullet, a)|_{M} = \{(q_{1}, a, q_{2}) \in \delta_{\mathscr{B}}(\bullet, a)|q_{1} \in M\} = IE(\mathscr{B}, a) \cup \vec{M}(\mathscr{B}, a).$

Observe that the mappings

$$\psi_{\text{start}} : IE(\mathscr{B}, a) \cup M(\mathscr{B}, a) \to IE(\mathscr{C}, a) \cup M(\mathscr{C}, a)$$

and

$$\psi_{\text{end}} : IE(\mathscr{B}, a) \cup \widetilde{M}(\mathscr{B}, a) \to IE(\mathscr{C}, a) \cup \widetilde{M}(\mathscr{C}, a)$$

are bijections. Both these bijections map inner edges to inner edges. The mapping ψ_{start} maps outgoing edges to outer edges and ψ_{end} maps ingoing edges to outer edges. The mapping ψ_{start} preserves starting points of edges and ψ_{end} preserves end points of edges.

Proposition 8. $|Q_{\mathcal{C}}| = |M| \le (2\ell - 1)(n - 1).$

Proof. Since $df_w(\mathscr{B}) = n - 1$, there are at most n - 1 empty states of \mathscr{B} during the action of the word w on the automaton \mathscr{B} , that is $|Q_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w_k)| \le n - 1$ for all $k, 0 \le k \le \ell$. Hence, the inequalities $|M(1, k)| \le n - 1$ and $|M(2, k)| \le n - 1$ hold for every $k, 1 \le k \le \ell$. The set M(2, 1) is empty. Thus,

$$|M| = \left| \bigcup_{k=1}^{\ell} M(1,k) \cup \bigcup_{k=2}^{\ell} M(2,k) \right| \le (2\ell - 1)(n-1). \quad \Box$$

Now we need an auxiliary construction. Let $s = a_1 a_2 \cdots a_t \in \Sigma^*$ be an arbitrary word and $a \in \Sigma$ be an arbitrary letter. We define an automaton $\mathscr{L}(s, a)$. We start with the incomplete automaton whose state set is $Q_{\mathscr{L}} = \{b_1, b_2, \dots, b_{t+1}\}$ and whose edges are

$$(b_1, a_1, b_2), (b_2, a_2, b_3), \dots, (b_t, a_t, b_{t+1}), (b_{t+1}, a, b_1).$$

After that we complete the automaton to a permutation automaton over Σ in an arbitrary way. Finally, we remove the edge (b_{t+1}, a, b_1) . We call the incomplete automaton $\mathscr{L}(s, a) = \langle Q_{\mathscr{L}}, \Sigma, \delta_{\mathscr{L}} \rangle$ the *buffer automaton of the word s* with the input–output letter a. The state b_1 of the automaton $\mathscr{L}(s, a)$ is called the *key state* and is denoted by $KS(\mathscr{L})$.

It is convenient to imagine that instead of the removed edge (b_{t+1}, a, b_1) , the automaton $\mathcal{L}(s, a)$ has got two 'open' edges (\bullet, a, b_1) and (b_{t+1}, a, \bullet) with undefined starting and end points respectively as shown on Fig. 3. We shall use such undefined starting and end points to attach buffer automata to the automaton \mathcal{C} .

Fig. 4. Attaching a buffer automaton.

Let $e = (q_1, a, q_2)$ be an outer edge of the automaton \mathscr{C} and let $\mathscr{L}(s, a) = \langle Q_{\mathscr{L}}, \Sigma, \delta_{\mathscr{L}} \rangle$ be an arbitrary buffer automaton whose input–output letter is a.

Then we define the operation $\mathscr{C} \stackrel{\circ}{\oplus} \mathscr{L}(s, a)$ of *attaching* the buffer automaton $\mathscr{L}(s, a)$ to the DFA \mathscr{C} instead of the edge *e* (Fig. 4). The result of this operation is a new automaton $\mathscr{T} = \langle Q_{\mathscr{T}}, \Sigma, \delta_{\mathscr{T}} \rangle$ defined as follows:

$$Q_{\mathscr{T}} = Q_{\mathscr{C}} \cup Q_{\mathscr{L}} = Q_{\mathscr{C}} \cup \{b_1, b_2, \dots, b_{t+1}\}$$
$$\delta_{\mathscr{T}}(q, c) = \begin{cases} \delta_{\mathscr{C}}(q, c), & \text{if } q \in Q_{\mathscr{C}} \setminus \{q_1\} \\ \delta_{\mathscr{C}}(q, c), & \text{if } q = q_1, c \neq a \\ b_1, & \text{if } q = q_1, c = a \\ \delta_{\mathscr{L}}(q, c), & \text{if } q \in \{b_1, b_2, \dots, b_t\} \\ \delta_{\mathscr{L}}(q, c), & \text{if } q = b_{t+1}, c \neq a \\ q_2, & \text{if } q = b_{t+1}, c = a. \end{cases}$$

We call the state q_2 the *output of the attached buffer automaton* $\mathcal{L}(s, a)$ and we denote this state by *out* \mathcal{L} .

Let $\{(p_i, a_i, q_i) = e_i \mid i \in \{1, ..., r\}\} \subseteq \widehat{M}(\mathscr{C})$ be a subset of the set of outer edges of \mathscr{C} and let $\{x_i \mid x_i \in \Sigma^*\}_{i=1}^r$ be a set of words. We can attach buffer automata simultaneously instead of r outer edges of the automaton \mathscr{C} . We denote the result of this operation by

$$\mathscr{D} = \langle Q_{\mathscr{D}}, \varSigma, \delta_{\mathscr{D}} \rangle = \mathscr{C} \stackrel{e_1}{\oplus} \mathscr{L}_1(x_1, a_1) \stackrel{e_2}{\oplus} \cdots \stackrel{e_r}{\oplus} \mathscr{L}_r(x_r, a_r).$$
(1)

The automaton \mathcal{D} depends on the choice of the set of outer edges e_i and the choice of the set of words x_i . Therefore we have a series of automata of the form (1).

Proposition 9. Any automaton \mathcal{D} of the form (1) is a DFA.

Proof. It is obvious due to the definitions of a buffer automaton and the operation of attaching a buffer automaton. \Box

The next lemma gives an important property of these automata.

Lemma 10. Every DFA \mathcal{D} of the form (1) satisfies the condition

$$Q_{\mathscr{D}} \setminus \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w_k) = Q_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w_k)$$

for every $k, 0 \le k \le \ell$.

Proof. Let $\overline{M} = Q_{\mathscr{B}} \setminus M$. Let $L = \bigcup_{i=1}^{r} Q_{\mathscr{L}_{i}}$, where $Q_{\mathscr{L}_{i}}$ is the state set of the buffer automaton \mathscr{L}_{i} . Then the state

sets of the automata \mathscr{B} and \mathscr{D} can be represented as $Q_{\mathscr{B}} = M \cup \overline{M}$ and $Q_{\mathscr{D}} = M \cup L$.

Let $D_k = Q_{\mathscr{D}} \setminus \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w_k)$, $B_k = Q_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w_k)$ be the sets of empty states of the automata \mathscr{D} and respectively \mathscr{B} after the action of the prefix w_k . Arguing by contradiction, we choose the minimal integer k $(0 \le k \le \ell)$ with the property $D_k \ne B_k$. Then there is a state $q \in (B_k \setminus D_k) \cup (D_k \setminus B_k)$. It is clear that

$$q \in (B_k \setminus D_k) \cup (D_k \setminus B_k) \subseteq B_k \cup D_k \subseteq M \cup M \cup L.$$

First we show that $q \notin L$, then that $q \notin \overline{M}$ and finally that $q \notin M$. This will yield a contradiction as desired.

Step 1. We prove that $q \notin L$.

It is clear that $k \neq 0$, since w_0 is the empty word and $D_0 = \emptyset = B_0$. Hence by the choice of k we have

$$D_{k-1} = B_{k-1} = Q_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w_{k-1}) = M(1, k-1) \subseteq M.$$

In particular, all states of the buffer automata \mathscr{L}_i $(1 \le i \le r)$ are covered by tokens after the action of w_{k-1} on the set $Q_{\mathscr{D}_i}$, because $Q_{\mathscr{D}_i} \cap M = \emptyset$.

Let $w_k = w_{k-1}a$. Consider an arbitrary buffer automaton \mathcal{L}_i attached instead of the edge e_i . If $e_i = (p_i, b, q_i)$, $b \neq a$, then the automaton \mathcal{L}_i is covered by tokens after the action of the word w_k on \mathcal{D} because a acts as a permutation on the set $Q_{\mathcal{L}_i}$ by the definition of buffer automata.

If $e_i = (p_i, a, q_i)$, then there is an outgoing edge $(p_i, a, r_i) = \psi_{\text{start}}^{-1}(e_i)$ of \mathscr{B} corresponding to e_i . We have $p_i \in \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w_{k-1})$ by Lemma 5. Hence p_i is covered by a token in \mathscr{D} after the action of w_{k-1} . Therefore the transformation $\delta_{\mathscr{D}}(\bullet, a)$ pushes the token into $Q_{\mathscr{L}_i}$. There is only one edge $f_i = (s_i, a, q_i)$ outgoing from the set $Q_{\mathscr{L}_i}$ in \mathscr{D} and there is no pair of edges labeled by a with a common end point in \mathscr{L}_i . It means that the number of tokens in $Q_{\mathscr{L}_i}$ is covered after the action of w_k and the state q_i is also covered. That is $Q_{\mathscr{L}_i} \subseteq \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w_k), q_i \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w_k)$.

Therefore, $q \notin L$.

Step 2. We prove that $q \notin \overline{M}$. Indeed, by the definition of the set M(1, k), we have $\overline{M} \subseteq \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w_k)$ whence $q \notin \overline{M}$.

Step 3. We prove that $q \notin M$.

Suppose that $q \in M$. We divide the proof into two cases.

Case 1. The state q is the end point of some ingoing edge f = (p, a, q) of the automaton \mathcal{B} .

The state $p \in \overline{M}$ is covered by a token after the action of w_{k-1} by Lemma 6. Hence q is covered by a token after the action of w_k in the automaton \mathscr{B} . Thus, $q \notin B_k$. The edge $\psi_{\text{end}}(f) = (s, a, q)$ is an outer edge of the automaton.

If this edge is replaced in \mathscr{D} by a buffer automaton, then, as we have shown on Step 1, $q \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w_k)$, that is, $q \notin D_k$. This contradicts the condition $q \in B_k \cup D_k$.

If the edge $\psi_{\text{end}}(f) = (s, a, q)$ is not replaced in \mathscr{D} by a buffer automaton, then the state *s* is the starting point of an outgoing edge $\psi_{\text{start}}^{-1}(\psi_{\text{end}}(f))$. Hence by Lemma 5 the state *s* is covered after the action of w_{k-1} in the automaton \mathscr{B} . In view of the equality $B_{k-1} = D_{k-1}$ this implies that the state *s* is covered after the action of w_{k-1} in the automaton \mathscr{D} . Therefore *q* is covered after the action of w_k in the automaton \mathscr{D} , that is $q \notin D_k$. This again contradicts the condition $q \in B_k \cup D_k$.

Case 2. There is no ingoing edge labeled by the letter a in \mathcal{B} with the end point q.

This means that there is no outer edge labeled by a with the end point q in \mathscr{C} . Therefore any edge e = (p, a, q)in \mathscr{D} or in \mathscr{D} is an inner edge. Thus, $p \in M$. The sets of inner edges of the automata \mathscr{B} and \mathscr{D} coincide. If there is an edge e = (p, a, q) such that $p \notin B_{k-1} = D_{k-1}$, then $q \notin B_k$ and $q \notin D_k$. If there is no edge e = (p, a, q) such that $p \notin B_{k-1} = D_{k-1}$, then $q \in B_k$ and $q \in D_k$. Both these conclusions contradict the condition $q \in (B_k \setminus D_k) \cup (D_k \setminus B_k)$. \Box

Corollary 11. For any DFA \mathscr{D} of the form (1), $df_w(\mathscr{D}) = df_w(\mathscr{B}) = n - 1$.

The last step of the proof consists in choosing an *n*-compressible automaton \mathscr{D} of the form (1). Let $p \in Q_{\mathscr{B}}$ and $v \in \Sigma^*$. We call the sequence of edges

 $tr(p, v) = \{(\delta_{\mathscr{B}}(p, v_{i-1}), v[i], \delta_{\mathscr{B}}(p, v_i))\}_{i=1}^{|v|}$

the trace of the word v from the state p.

Lemma 12. Suppose $p \in Q_{\mathscr{B}}$, $v \in \Sigma^*$ and \mathscr{D} is a DFA of the form (1). If $tr(p, v) \subseteq IE(\mathscr{B})$, then $\delta_{\mathscr{B}}(p, v) = \delta_{\mathscr{D}}(p, v)$.

Proof. Since $tr(p, v) \subseteq IE(\mathscr{B})$, the path tr(p, v) contains no outgoing edges. Hence, the edges $(\delta_{\mathscr{B}}(p, v_{i-1}), v[i], \delta_{\mathscr{B}}(p, v_i))$ and $(\delta_{\mathscr{D}}(p, v_{i-1}), v[i], \delta_{\mathscr{D}}(p, v_i))$ coincide for every $i, 1 \leq i \leq |v|$. \Box

Proposition 13. There exists an n-compressible DFA $\mathscr{D} = \langle Q_{\mathscr{D}}, \Sigma, \delta_{\mathscr{D}} \rangle$ of the form (1) such that $df_w(\mathscr{D}) < n$ and $|Q_{\mathscr{D}}| \leq |M| + n + 1$.

Proof. By Corollary 11, $df_w(\mathscr{D}) = n - 1$ for any automaton \mathscr{D} of the form (1). Our aim is to choose an automaton \mathscr{D} of the form (1), two different states $G, H \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w)$ and a word Z such that $\delta_{\mathscr{D}}(G, Z) = \delta_{\mathscr{D}}(H, Z)$. This means that the states G and H are covered by tokens after the action of w and the word Z removes one of the tokens. Hence the automaton \mathscr{D} is *n*-compressible. If we find G, H, Z and $\mathscr{D} = \langle Q_{\mathscr{D}}, \Sigma, \delta_{\mathscr{D}} \rangle$, where $|Q_{\mathscr{D}}| \leq |M| + n + 1$, then we complete the proof of the theorem.

Recall that $df_w(\mathscr{B}) = n - 1$ and the automaton \mathscr{B} is *n*-compressible. It means that there exists a word $v \in \Sigma^*$ such that $df_v(\mathscr{B}) \ge n$. Note that $df_{wv}(\mathscr{B}) \ge n$. Then there are two different states $p, r \in \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w)$ $(p \ne r)$ and a word $u = a_1a_2 \cdots a_k \in \Sigma^*$ such that $\delta_{\mathscr{B}}(p, u) = \delta_{\mathscr{B}}(r, u)$. Without loss of generality, we may assume that $\delta_{\mathscr{B}}(p, u_{k-1}) \ne \delta_{\mathscr{B}}(r, u_{k-1})$. Let $q = \delta_{\mathscr{B}}(p, u)$. Applying Proposition 4 to the states $\delta_{\mathscr{B}}(p, u_{k-1})$ and $\delta_{\mathscr{B}}(r, u_{k-1})$ and the letter a_k we obtain that $q \in M$.

Let $N = \{j \mid 0 \le j \le |u|, \delta_{\mathscr{B}}(p, u_j) \notin M \text{ or } \delta_{\mathscr{B}}(r, u_j) \notin M\}$. If $N = \emptyset$, i.e. $tr(p, u) \subseteq IE(\mathscr{B})$ and $tr(r, u) \subseteq IE(\mathscr{B})$; then by Lemma 12, $\delta_{\mathscr{C}}(r, u) = \delta_{\mathscr{B}}(r, u) = \delta_{\mathscr{B}}(p, u) = \delta_{\mathscr{C}}(p, u)$. This means that we can put $\mathscr{D} = \mathscr{C}, G = p, H = r$ and Z = u. Note that $|Q_{\mathscr{D}}| = |M| \le |M| + n + 1$.

Suppose that $N \neq \emptyset$. We define $j = \max N$. Note that j < |u| because $\delta_{\mathscr{B}}(p, u) = \delta_{\mathscr{B}}(r, u) \in M$. Let $p_1 = \delta_{\mathscr{B}}(p, u_j), p_2 = \delta_{\mathscr{B}}(p, u_{j+1}), r_1 = \delta_{\mathscr{B}}(r, u_j), r_2 = \delta_{\mathscr{B}}(r, u_{j+1}), a = u[j + 1]$. We denote the word $a_{j+2} \dots a_k$ by v, whence $u = u_j a v$.

Case 1. Assume that $p_1 \notin M$ and $r_1 \notin M$.

Then $e_1 = (p_1, a, p_2)$ and $e_2 = (r_1, a, r_2)$ are different ingoing edges of the automaton \mathscr{B} . Let $f_1 = \psi_{end}(e_1)$ and $f_2 = \psi_{end}(e_2)$ be the corresponding outer edges of the automaton \mathscr{C} . Consider two identical buffer automata $\mathscr{L}_1(\lambda, a)$ and $\mathscr{L}_2(\lambda, a)$ of the empty word λ with the input–output letter a. Let $\mathscr{D} = \mathscr{C} \bigoplus_{i=1}^{f_1} \mathscr{L}_1(\lambda, a) \bigoplus_{i=1}^{f_2} \mathscr{L}_2(\lambda, a)$. Since the mapping ψ_{end} preserves the end points of edges, we have $out \mathscr{L}_1 = p_2$ and $out \mathscr{L}_2 = r_2$. Hence

$$\delta_{\mathscr{D}}(KS(\mathscr{L}_1), \lambda av) = \delta_{\mathscr{D}}(out\mathscr{L}_1, v) = \delta_{\mathscr{D}}(p_2, v) \stackrel{Lemma \ 12}{=} \delta_{\mathscr{B}}(p_2, v) = q$$

and

$$\delta_{\mathscr{D}}(KS(\mathscr{L}_2),\lambda av) = \delta_{\mathscr{D}}(out\mathscr{L}_2,v) = \delta_{\mathscr{D}}(r_2,v) \stackrel{Lemma \ 12}{=} \delta_{\mathscr{B}}(r_2,v) = q.$$

Since $KS(\mathscr{L}_1) \notin Q_{\mathscr{B}}$ and $KS(\mathscr{L}_2) \notin Q_{\mathscr{B}}$, we have $KS(\mathscr{L}_1) \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w)$ and $KS(\mathscr{L}_2) \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w)$ by Lemma 10. Note that $|Q_{\mathscr{D}}| = |M| + 2 \le |M| + n + 1$. Now we can put $G = KS(\mathscr{L}_1)$, $H = KS(\mathscr{L}_2)$ and Z = v.

Case 2. Assume that exactly one of the states p_1 and r_1 does not belong to the set M. Without loss of generality we suppose that $p_1 \in M$ while $r_1 \notin M$.

Case 2a. Assume that there exists a word $x \in \Sigma^*$ and a state $s \in \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w)$ such that $tr(s, x) \subseteq IE(\mathscr{B})$ and $\delta_{\mathscr{B}}(s, x) = p_1$. We choose the pair (x, s) such that the word x is the shortest with this property. Then the path tr(s, x) visits each of its state only once. Furthermore, $\delta_{\mathscr{B}}(s, x_i) \notin \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w)$ for each $i, 1 \leq i \leq |x|$.

Since $|Q_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w)| = n - 1$, we obtain $|x| \leq n - 1$. Note that the edge $e = (r_1, a, r_2)$ is an ingoing edge of \mathscr{B} . Let $f = \psi_{end}(e)$ be the corresponding outer edge of \mathscr{C} . We put $\mathscr{D} = \mathscr{C} \bigoplus^{f} \mathscr{L}(x, a)$. Note that $|Q_{\mathscr{P}}| \leq |M| + n \leq |M| + n + 1$.

Since $KS(\mathscr{L}) \notin Q_{\mathscr{B}}$, we have $KS(\mathscr{L}) \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w)$ by Lemma 10. Note that $s \in Q_{\mathscr{D}}$, because $s \in M$. Since $s \in \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w)$, we have

$$s \notin \mathcal{Q}_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(\mathcal{Q}_{\mathscr{B}}, w) \stackrel{Lemma \ 10}{=} \mathcal{Q}_{\mathscr{D}} \setminus \delta_{\mathscr{D}}(\mathcal{Q}_{\mathscr{D}}, w),$$

whence $s \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w)$.

By the definition of the state *s* we have

$$\delta_{\mathscr{D}}(s,xav) \stackrel{Lemma \ 12}{=} \delta_{\mathscr{B}}(s,xav) = \delta_{\mathscr{B}}(p_1,av) = q.$$

By the definition of buffer automata we obtain that

$$\delta_{\mathscr{D}}(KS(\mathscr{L}), xav) = \delta_{\mathscr{D}}(out\mathscr{L}, v) = \delta_{\mathscr{D}}(r_2, v) \stackrel{Lemma \ 12}{=} \delta_{\mathscr{B}}(r_2, v) = q$$

Now we can put $G = KS(\mathcal{L})$, H = s and Z = xav.

Case 2b. Assume that there is no word $x \in \Sigma^*$ and no state $s \in \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w)$ such that $tr(s, x) \subseteq IE(\mathscr{B})$ and $\delta_{\mathscr{B}}(s, x) = p_1$.

Suppose that $tr(p, u_j) \subseteq IE(\mathscr{B})$. Then we have a pair (u_j, p) such that $tr(p, u_j) \subseteq IE(\mathscr{B})$ and $\delta_{\mathscr{B}}(p, u_j) = p_1$. This contradicts the assumption of this case. Hence, $tr(p, u_j) \not\subseteq IE(\mathscr{B})$. This means that there is a triple (b, x, s) such that $b \in \Sigma$, $x \in \Sigma^*$, $s \in Q_{\mathscr{B}} \setminus M$, $tr(\delta_{\mathscr{B}}(s, b), x) \subseteq IE(\mathscr{B})$ and $\delta_{\mathscr{B}}(s, bx) = p_1$. We fix a triple (b, x, s) such that the word x is the shortest with these properties. Let $t = \delta_{\mathscr{B}}(s, b)$. Then the path tr(t, x) visits each of its state only once.

Note that $\forall i, 0 \leq i \leq |x|, \delta_{\mathscr{B}}(t, x_i) \notin \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w)$. Otherwise, there is a number *i* such that $\delta_{\mathscr{B}}(t, x_i) \in \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w)$, whence the pair $(x[i+1]x[i+2]\dots, \delta_{\mathscr{B}}(t, x_i))$ contradicts the assumption of this case.

Since $|Q_{\mathscr{B}} \setminus \delta_{\mathscr{B}}(Q_{\mathscr{B}}, w)| = n - 1$, we obtain $|x| \le n - 2$.

Note that the edges $e_1 = (s, b, t)$ and $e_2 = (r_1, a, r_2)$ are ingoing edges of the automaton \mathcal{B} .

Subcase 2b1. Assume that
$$e_1 \neq e_2$$
.

Let $f_1 = \psi_{\text{end}}(e_1)$ and $f_2 = \psi_{\text{end}}(e_2)$ be the corresponding outer edges of the automaton \mathscr{C} . Consider the buffer automata $\mathscr{L}_1(\lambda, b)$ and $\mathscr{L}_2(bx, a)$. We put $\mathscr{D} = \mathscr{C} \bigoplus_{i=1}^{f_1} \mathscr{L}_1 \bigoplus_{i=1}^{f_2} \mathscr{L}_2$. Then $|Q_{\mathscr{D}}| \leq |M| + n + 1$.

Since $KS(\mathscr{L}_1) \notin Q_{\mathscr{B}}$ and $KS(\mathscr{L}_2) \notin Q_{\mathscr{B}}$, we have $KS(\mathscr{L}_1) \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w)$ and $KS(\mathscr{L}_2) \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w)$ by Lemma 10.

By the definition of buffer automata we obtain that

$$\delta_{\mathscr{D}}(KS(\mathscr{L}_1), \lambda bxav) = \delta_{\mathscr{D}}(out\mathscr{L}_1, xav) = \delta_{\mathscr{D}}(t, xav) \stackrel{Lemma \ 12}{=} \delta_{\mathscr{B}}(t, xav).$$

By the choice of the states *s* and *t* we have

 $\delta_{\mathscr{B}}(t, xav) = \delta_{\mathscr{B}}(s, bxav) = \delta_{\mathscr{B}}(p_1, av) = q.$

By the definition of buffer automata we obtain that

$$\delta_{\mathscr{D}}(KS(\mathscr{L}_2), bxav) = \delta_{\mathscr{D}}(out\mathscr{L}_2, v) = \delta_{\mathscr{D}}(r_2, v) \stackrel{Lemma \ 12}{=} \delta_{\mathscr{B}}(r_2, v) = q$$

Now we can put $G = KS(\mathcal{L}_1)$, $H = KS(\mathcal{L}_2)$ and Z = bxav.

Subcase 2b2. Assume that $e_1 = e_2$, i.e. $s = r_1, t = r_2, b = a$.

Let $f = \psi_{\text{end}}(e_1)$ be the corresponding outer edge of the automaton \mathscr{C} . Consider the buffer automaton $\mathscr{L}(ax, a)$. We put $\mathscr{D} = \mathscr{C} \stackrel{f}{\oplus} \mathscr{L}$. Then $|Q_{\mathscr{D}}| < |M| + n < |M| + n + 1$.

Let $o = \delta_{\mathscr{B}}(KS(\mathscr{L}), ax)$. Since $KS(\mathscr{L}) \notin Q_{\mathscr{B}}$ and $o \notin Q_{\mathscr{B}}$, we have $KS(\mathscr{L}) \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w)$ and $o \in \delta_{\mathscr{D}}(Q_{\mathscr{D}}, w)$ by Lemma 10.

By the definition of buffer automata we obtain that

$$\delta_{\mathscr{D}}(o, axav) = \delta_{\mathscr{D}}(out\mathscr{L}, xav) = \delta_{\mathscr{D}}(t, xav) \stackrel{Lemma \ 12}{=} \delta_{\mathscr{B}}(t, xav).$$

By the choice of the states *s* and *t* we have

$$\delta_{\mathscr{B}}(t, xav) = \delta_{\mathscr{B}}(s, axav) = \delta_{\mathscr{B}}(p_1, av) = q.$$

By the definition of a buffer automaton we obtain that

$$\delta_{\mathscr{D}}(KS(\mathscr{L}), axav) = \delta_{\mathscr{D}}(out\mathscr{L}, v) = \delta_{\mathscr{D}}(r_2, v) \stackrel{Lemma \ 12}{=} \delta_{\mathscr{B}}(r_2, v) = q.$$

Hence, $\delta_{\mathscr{D}}(o, axav) = \delta_{\mathscr{D}}(KS(\mathscr{L}), axav)$. Thus, we can put $G = KS(\mathscr{L}), H = o$ and Z = axav. \Box

By combining Lemma 2, Propositions 8 and 13, we obtain the proof of Theorem 1.

Acknowledgement

This work was supported by the Russian Foundation for Basic Research, grant 05-01-00540.

References

- D.S. Ananichev, A. Cherubini, M.V. Volkov, An inverse automata algorithm for recognizing 2-collapsing words, in: M. Ito, M. Toyama (Eds.), Developments in Language Theory, in: Lect. Notes Comp. Sci., vol. 2450, Springer-Verlag, Berlin, Heidelberg, New York, 2003, pp. 270–282.
- [2] D.S. Ananichev, A. Cherubini, M.V. Volkov, Image reducing words and subgroups of free groups, Theoret. Comput. Sci. 307 (2003) 77–92.
- [3] D.S. Ananichev, I.V. Petrov, M.V. Volkov, Collapsing words: A progress report, Internat. J. Found. Comput. Sci. 17 (2006) 507–518.
- [4] S. Margolis, J.-E. Pin, M.V. Volkov, Words guaranteeing minimum image, Internat. J. Found. Comput. Sci. 15 (2004) 259–276.
- [5] A. Mateesku, A. Salomaa, Aspects of classical language theory, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. I. Word. Language, Grammar, Springer-Verlag, Berlin, Heidelberg, New York, 1997, pp. 175–251.
- [6] E.V. Pribavkina, On some properties of the Language of 2-collapsing words, Internat. J. Found. Comput. Sci. 17 (2006) 665–676.
- [7] N. Sauer, M.G. Stone, Composing functions to reduce image size, Ars Combin. 31 (1991) 171-176.

108