An algorithm for recognition of n-collapsing words

I.V. Petrov
Department of Mathematics and Mechanics, Ural State University, 620083 Ekaterinburg, Russia

Abstract

A word w over a finite alphabet Σ is n-collapsing if for an arbitrary deterministic finite automaton $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$, the inequality $|\delta(Q, w)| \leq|Q|-n$ holds provided that $|\delta(Q, u)| \leq|Q|-n$ for some word $u \in \Sigma^{+}$(depending on \mathscr{A}). We prove that the property of n-collapsing is algorithmically recognizable for any given positive integer n. We also prove that the language of all n-collapsing words is context-sensitive. (c) 2007 Elsevier B.V. All rights reserved.

Keywords: Deterministic finite automaton; n-collapsing word; Context-sensitive language

1. Main result and its application

Let $\mathscr{A}=\left\langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}}\right\rangle$ be a deterministic finite automaton (DFA), where $Q_{\mathscr{A}}$ denotes the state set, Σ stands for the input alphabet, and $\delta_{\mathscr{A}}: Q_{\mathscr{A}} \times \Sigma \rightarrow Q_{\mathscr{A}}$ is the transition function defining an action of the letters in Σ on $Q_{\mathscr{A}}$. This action can be uniquely extended to an action $Q_{\mathscr{A}} \times \Sigma^{*} \rightarrow Q_{\mathscr{A}}$ of the free monoid Σ^{*} over Σ with the empty word λ; the latter action is still denoted by $\delta_{\mathscr{A}}$. Given a word $w \in \Sigma^{*}$ and a non-empty subset $X \subseteq Q_{\mathscr{A}}$, we write $\delta_{\mathscr{A}}(X, w)$ for the set $\left\{\delta_{\mathscr{A}}(x, w) \mid x \in X\right\}$ and say that the word w acts on the set X. The difference $\mathrm{d} f_{w}(\mathscr{A})=\left|Q_{\mathscr{A}}\right|-\left|\delta_{\mathscr{A}}\left(Q_{\mathscr{A}}, w\right)\right|$ is called the deficiency of the action of w on the automaton \mathscr{A}.

Let n be a positive integer. A DFA $\mathscr{A}=\left\langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}}\right\rangle$ is said to be n-compressible if there is a word $w \in \Sigma^{*}$ such that $\mathrm{d} f_{w}(\mathscr{A}) \geq n$. The word w is then called n-compressing with respect to \mathscr{A}. We note that there is a straightforward algorithm that verifies whether a given DFA is n-compressible; the time complexity of this algorithm is a quadratic polynomial of the number of states of the DFA.

A word $w \in \Sigma^{*}$ is said to be n-collapsing if w is n-compressing with respect to every n-compressible DFA whose input alphabet is Σ. In other words, a word $w \in \Sigma^{*}$ is n-collapsing if for any DFA $\mathscr{A}=\left\langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}}\right\rangle$ we have $\mathrm{d} f_{w}(\mathscr{A}) \geq n$ whenever \mathscr{A} is n-compressible. Thus, such a word is a 'universal tester' whose action on the state set of an arbitrary DFA with a fixed input alphabet exposes whether or not the automaton is n-compressible.

It is known that n-collapsing words exist for every n and over every finite alphabet Σ, see [7, Theorem 3.3] or [4, Theorem 2]. As the existence has been established, the next crucial step is to master, for each positive integer n, an algorithm that recognizes whether a given word is n-collapsing. This problem is non-trivial whenever $n>1$ and $|\Sigma|>1$ which will be assumed throughout. In [2], where the recognition problem was first formulated, it was solved

[^0]for the case $n=2$. A more geometric version of this solution was presented in [1]. The algorithm in [1] produces for a given word $w \in \Sigma^{*}$ a finite number of inverse automata such that w is not 2 -collapsing if and only if at least one of these inverse automata can be completed to a 2-compressible DFA $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ with $|Q|<|w|$ and $\mathrm{d} f_{w}(\mathscr{A})=1$ (here and below $|w|$ stands for length of the word w).

No analogue of the algorithms from [1,2] is known for n-collapsing words with $n>2$. Therefore, the author has tried another approach aiming to show that the language $\mathcal{C}_{n}(\Sigma)$ of all n-collapsing words over Σ is decidable in principle, i.e. $\mathcal{C}_{n}(\Sigma)$ is a recursive subset of Σ^{*}. For this, it suffices to find, for each positive integer n, a computable function $f_{n}: \mathbb{N} \rightarrow \mathbb{N}$ such that a word $w \in \Sigma^{*}$ is n-collapsing provided $\mathrm{d} f_{w}(\mathscr{A}) \geq n$ for every n-compressible DFA $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ with $|Q| \leq f_{n}(|w|)$. Indeed, if such a function exists, then, given a word w, one can calculate the value $m=f_{n}(|w|)$ and then check the above condition through all automata with at most m states. Since there are only finitely many such automata with the input alphabet Σ, the procedure will eventually stop. If in the course of the procedure one encounters an n-compressible DFA \mathscr{A} with $\mathrm{d} f_{w}(\mathscr{A})<n$, then w is not n-collapsing by the definition. If no such automaton is found, then w is n-collapsing by the choice of the function f_{n}.

From the results of [1] it follows that, for $n=2$, the function $f_{2}(|w|)=\max \{3,|w|-1\}$ satisfies the desired property. The author first managed to show that the functions $f_{n}(|w|)=3|w|(n-1)+n+1$ satisfy the desired property for every n. This result was announced (with an outline of the proof) in the survey paper [3]. Here we improve this result by showing that some smaller functions, namely $f_{n}(|w|)=2|w|(n-1)+2$, do the job as well. Thus, the main result of the present paper is the following theorem.

Theorem 1. Let $w \in \Sigma^{*}$ be a word which is not n-collapsing. Then there exists an n-compressible automaton $\mathscr{D}=\left\langle Q_{\mathscr{D}}, \Sigma, \delta_{\mathscr{D}}\right\rangle$ with $\left|Q_{\mathscr{D}}\right| \leq 2|w|(n-1)+2$ such that $\mathrm{d} f_{w}(\mathscr{D})<n$.

Since the function $f_{n}(|w|)=2|w|(n-1)+2$ is linear (with respect to $|w|$), we immediately obtain a nondeterministic linear space and polynomial time algorithm recognizing the complement of the language $\mathcal{C}_{n}(\Sigma)$ of all n-collapsing words over Σ : the algorithm simply makes a guess consisting of a DFA $\mathscr{A}=\left\langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}}\right\rangle$ with $\left|Q_{\mathscr{A}}\right| \leq 2|w|(n-1)+2$ and then verifies that \mathscr{A} is n-compressible and that w is not n-compressing with respect to \mathscr{A}. By classical results of formal language theory (cf. [5, Sections 2.4 and 2.5$]$), this implies that the language $\mathcal{C}_{n}(\Sigma)$ is context-sensitive. We mention that Pribavkina [6] has shown that the language $\mathcal{C}_{2}(\Sigma)$ with $|\Sigma|=2$ is not context-free. For the case when either $n>2$ or $|\Sigma|>2$, the problem of locating the language $\mathcal{C}_{n}(\Sigma)$ with respect to the Chomsky hierarchy still remains open.

2. The proof of Theorem 1

It is convenient for us to think of each DFA $\mathscr{A}=\left\langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}}\right\rangle$ as a digraph with the vertex set $Q_{\mathscr{A}}$. We denote by (p, a, q) the edge from $p \in Q_{\mathscr{A}}$ to $q \in Q_{\mathscr{A}}$ labeled by the letter $a \in \Sigma$. We shall identify the transition function $\delta_{\mathscr{A}}: Q_{\mathscr{A}} \times \Sigma \rightarrow Q_{\mathscr{A}}$ with its graph $\left\{\left(v, a, \delta_{\mathscr{A}}(v, a)\right) \mid v \in Q_{\mathscr{A}}, a \in \Sigma\right\}$; that is, the expressions $(p, a, q) \in \delta_{\mathscr{A}}$ and $\delta_{\mathscr{A}}(p, a)=q$ mean the same. We denote the set $\left\{\left(v, a, \delta_{\mathscr{A}}(v, a)\right) \mid v \in Q_{\mathscr{A}}\right\}$ by $\delta_{\mathscr{A}}(\bullet, a)$, i.e. $\delta_{\mathscr{A}}(\bullet, a)$ is the set of all edges labeled by a; on the other hand, $\delta_{\mathscr{A}}(\bullet, a)$ is the transformation of the set $Q_{\mathscr{A}}$ under applying the letter a.

We need some notations and definitions. Let u be a word in Σ^{*}. We denote by $u[k]$ and u_{k} the k th letter and the prefix of length k of the word $u(k \leq|u|)$. That is if $u=a_{1} a_{2} \ldots a_{t}$, then $u[k]=a_{k}$ and $u_{k}=a_{1} a_{2} \ldots a_{k}$ respectively. Furthermore, by definition put $u_{0}=\lambda$.

If u, v are words over Σ and $u=v^{\prime} v v^{\prime \prime}$ for some $v^{\prime}, v^{\prime \prime} \in \Sigma^{*}$, we say that v is a factor of u. It is convenient to have a name for the property of a word $w \in \Sigma^{*}$ to have all words of length n among its factors. We say that such a word w is n-full. We say that an n-compressible automaton \mathscr{A} is n-proper if no word of length n is n-compressing with respect to \mathscr{A}.

The following lemma is a direct corollary of [2, Lemma 2.1].
Lemma 2. If a word w is not n-full, then there is an n-compressible automaton $\mathscr{A}=\left\langle Q, \mathscr{A}, \Sigma \delta_{\mathscr{A}}\right\rangle$ such that $\left|Q_{\mathscr{A}}\right| \leq|w|$ and $\mathrm{d} f_{w}(\mathscr{A})<n$.

In view of Lemma 2, in the sequel we consider only n-full words. Fix an n-full word $w \in \Sigma^{*}$ which is not n collapsing and consider an n-compressible DFA $\mathscr{A}=\left\langle Q_{\mathscr{A}}, \Sigma, \delta_{\mathscr{A}}\right\rangle$ such that $\mathrm{d} f_{w}(\mathscr{A})<n$. The word w has every word of length n as a factor whence the automaton \mathscr{A} is n-proper. Suppose $\mathrm{d} f_{w}(\mathscr{A})=k<n$. In this case we extend the automaton \mathscr{A} to a new automaton $\mathscr{B}=\left\langle Q_{\mathscr{B}}, \Sigma, \delta_{\mathscr{B}}\right\rangle$ with $\mathrm{d} f_{w}(\mathscr{B})=n-1$. For this, we append $n-k$ new states

Fig. 1. Redistributing tokens under the action of the letter a.

Fig. 2. Marking induced by the transition shown in Fig. 1.
q_{1}, \ldots, q_{n-k} and extend the transition function to these new states by letting $\delta_{\mathscr{B}}\left(q_{i}, a\right)=q_{1}$ for all $i=1, \ldots, n-k$ and all $a \in \Sigma$. The following lemma is a direct corollary of the definition of \mathscr{B}.

Lemma 3. The DFA \mathscr{B} is an n-proper and n-compressible automaton, and $\mathrm{d} f_{w}(\mathscr{B})=n-1$.
Now assume that some of the states of the DFA \mathscr{B} are covered by tokens and the action of any letter $a \in \Sigma$ redistributes the tokens according to the following rule: a state $q \in Q_{\mathscr{B}}$ will be covered by a token after the action of a if and only if there exists a state $q^{\prime} \in Q_{\mathscr{B}}$ such that $\delta_{\mathscr{B}}\left(q^{\prime}, a\right)=q$ and q^{\prime} was covered by a token before the action. In more 'visual' terms, the rule amounts to saying that tokens slide along the edges labeled by a and, whenever several tokens arrive at the same state, all but one of them are removed. Fig. 1 illustrates this rule: its right part shows how tokens are distributed over the state set of a DFA after completing the action of the letter a on the distribution shown on the left. It is convenient to call a state empty if it is not currently covered by a token.

Let $\ell=|w|$. We cover all states in $Q_{\mathscr{B}}$ by tokens and let the letters $w[1], \ldots, w[\ell]$ act in succession. On the k th step of this procedure we mark all elements of the following sets of states:

$$
\begin{aligned}
& M(1, k)=Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{k}\right) ; \\
& M(2, k)=\delta_{\mathscr{B}}\left(Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{k-1}\right), w[k]\right)=\delta_{\mathscr{B}}(M(1, k-1), w[k]) .
\end{aligned}
$$

The meaning of these sets can be easily explained in terms of the distribution of tokens before and after the action of the letter $w[k]$. The set $M(1, k)$ consists of empty states after the action of the letter $w[k]$. The set $M(2, k)$ is the set of all states to which the letter $w[k]$ brings states that had been empty before the action of $w[k]$. Note that $M(2,1)=\varnothing$ because there is no empty state before the action of the first letter of w.

For example, assume that the transition shown in Fig. 1 represents the k th step of the above procedure (so that $w[k]=a)$. Then three states get marks as shown on Fig. 2. Indeed, $M(2, k)=\{4\}$ because 3 was the only empty state before the action of a and $\delta_{\mathscr{B}}(3, a)=4$. Further, $M(1, k)=\{2,5\}$.

Put $M=\bigcup_{1 \leq k \leq \ell}(M(1, k) \cup M(2, k))$. We call M the set of marked states of the DFA \mathscr{B} or the marked set for short.
The next proposition registers an important property of the marked set.
Proposition 4. Let $a \in \Sigma, p, r \in Q_{\mathscr{B}}$ and $p \neq r$. If $\delta_{\mathscr{B}}(p, a)=\delta_{\mathscr{B}}(r, a)$, then $\delta_{\mathscr{B}}(p, a) \in M$.
Proof. Since the word w is n-full, it has at least one factor a^{n}. Let $w=w_{i} a^{n} v$. The automaton \mathscr{B} is n-proper whence $d f_{a^{n}}(\mathscr{B}) \leq n-1$. Therefore the non-increasing chain $Q_{\mathscr{B}} \supseteq \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, a\right) \supseteq \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, a^{2}\right) \supseteq \cdots$ stabilizes after at most $n-1$ steps whence a acts on the set $\delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, a^{n-1}\right)$ as a permutation.

Let $q=\delta_{\mathscr{B}}(p, a)=\delta_{\mathscr{B}}(r, a)$. If $q \notin \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, a^{n-1}\right)$ then

$$
q \in Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, a^{n-1}\right) \subseteq Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{i} a^{n-1}\right)=M(1, i+n-1) \subseteq M .
$$

Now assume $q \in \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, a^{n-1}\right)$. The states p and r cannot simultaneously belong to $\delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, a^{n-1}\right)$ because a acts as a permutation on this set while $\delta_{\mathscr{B}}(p, a)=\delta_{\mathscr{B}}(r, a)$. Without loss of generality, assume that $p \notin$ $\delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, a^{n-1}\right)$. Then

$$
p \in Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{i} a^{n-1}\right) \subseteq M(1, i+n-1)
$$

Therefore $q \in M(2, i+n) \subseteq M$.
An edge $e=\left(q_{1}, a, q_{2}\right)$ of the automaton \mathscr{B} is called:

- inner if it connects two marked states of \mathscr{B}, i.e. $q_{1}, q_{2} \in M$. By $\operatorname{IE}(\mathscr{B}, a)$ we denote the set of all inner edges of the automaton \mathscr{B} labeled by a. Let $\operatorname{IE}(\mathscr{B})=\bigcup_{a \in \Sigma} I E(\mathscr{B}, a)$.
- outgoing if its starting point is marked while its end point is not, i.e. $q_{1} \in M, q_{2} \notin M$. By $\vec{M}(\mathscr{B}, a)$ we denote the set of all outgoing edges of the automaton \mathscr{B} labeled by a.
- ingoing if its end point is marked while its starting point is not, i.e. $q_{1} \notin M, q_{2} \in M$. Ву $\overleftarrow{M}(\mathscr{B}, a)$ we denote the set of all ingoing edges of the automaton \mathscr{B} labeled by a.

Lemma 5. After the action of the prefix w_{k-1}, the initial vertex of every outgoing edge $e=\left(q_{1}, w[k], q_{2}\right)$ labeled by the letter $w[k]$ holds a token.

Proof. Arguing by contradiction, suppose that the state q_{1} is empty after the action of w_{k-1}. Then the state q_{2} belongs to the set M by the definition of $M(2, k)$, whence the edge $e=\left(q_{1}, w[k], q_{2}\right)$ is inner, a contradiction.

Lemma 6. After the action of the prefix w_{k-1}, the initial vertex of every ingoing edge $e=\left(q_{1}, w[k], q_{2}\right)$ labeled by the letter $w[k]$ holds a token.

Proof. Since the edge e is ingoing, the state q_{1} does not belong to the marked set M. Hence, the state q_{1} never becomes empty.

Proposition 7. For each letter $a \in \Sigma$, the numbers of ingoing and outgoing edges labeled by a in the automaton \mathscr{B} are equal.

Proof. Let $\bar{M}=Q_{\mathscr{B}} \backslash M$ be the complement of the marked set M. By the definition of $M(1, k)(1 \leq k \leq \ell)$, after the action of the word w_{k} all empty states belong to the set M and hence all states of the set \bar{M} are covered by tokens. Therefore the number of tokens in \bar{M} is equal to $|\bar{M}|$ and remains constant all the time.

For a given letter a, we denote by I_{a} and O_{a} the number of ingoing and respectively outgoing edges labeled by a. Since the word w is n-full, there is a position $i, 1 \leq i \leq \ell$, such that $w[i]=a$.

Consider the action of the letter $w[i]$ and check how it affects the number of the tokens in \bar{M}. The number of tokens leaving the set \bar{M} is equal to I_{a} by Lemma 6 . The number of tokens coming to the set \bar{M} is equal to O_{a} by Lemma 5. Any token in \bar{M} which is removed after the action leaves the set \bar{M}. Indeed, it moves along the edge $(p, w[i], q)$ which shares its end point q with another edge $(r, w[i], q)$. The state q is not in \bar{M} by Proposition 4.

We see that after the action of $w[i]$ the number of tokens in \bar{M} is equal to $|\bar{M}|+O_{a}-I_{a}$ and, on the other hand, it is always equal to $|\bar{M}|$. Therefore $O_{a}=I_{a}$.

Now we are ready to extract from the automaton \mathscr{B} a new automaton $\mathscr{C}=\left\langle Q_{\mathscr{C}}, \Sigma, \delta_{\mathscr{C}}\right\rangle$. The state set of this new automaton coincides with the marked set M of the automaton \mathscr{B} and the transitions between their states are the inner edges of the automaton \mathscr{B}, i.e. $Q_{\mathscr{C}}=M$ and $\delta_{\mathscr{C}}=\operatorname{IE}(\mathscr{B})$. In general, the automaton \mathscr{C} is not complete because the automaton \mathscr{B} may have outgoing edges.

We complete the automaton \mathscr{C} to a DFA and simultaneously define two maps $\psi_{\text {start }}$ and $\psi_{\text {end }}$. To start with, we put $\psi_{\text {start }}(e)=\psi_{\text {end }}(e)=e$ for each inner edge $e \in \operatorname{IE}(\mathscr{B})$ of the automaton \mathscr{B}.

Now consider a letter $a \in \Sigma$. By Proposition 7 there is a bijection

$$
\varphi_{a}: \vec{M}(\mathscr{B}, a) \rightarrow \overleftarrow{M}(\mathscr{B}, a)
$$

We fix such a bijection φ_{a} and do the following for each outgoing edge $e=\left(q_{1}, a, q_{2}\right)$. Let $\varphi_{a}(e)=\left(q_{3}, a, q_{4}\right)$. It is an ingoing edge. We append a new edge $f=\left(q_{1}, a, q_{4}\right)$ to the automaton \mathscr{C}, connecting the starting point

Fig. 3. Building a buffer automaton.
of e with the end point of $\varphi_{a}(e)$. We call each such edge an outer edge of the automaton \mathscr{C}. Then we define $\psi_{\text {start }}(e)=\psi_{\text {end }}\left(\varphi_{a}(e)\right)=f$.

By performing the described operation for each letter $a \in \Sigma$, we obtain a complete DFA which we still denote by \mathscr{C}. This should not lead to any confusion since from now on we shall use the completed version of \mathscr{C} only.

The inner edges of the automaton \mathscr{B} will be also called the inner edges of the automaton \mathscr{C}. Now we define

$$
\begin{array}{ll}
\operatorname{IE}(\mathscr{C}, a)=\left\{e=\left(q_{1}, a, q_{2}\right) \mid e \text { is an inner edge in } \mathscr{C}\right\}, & \operatorname{IE}(\mathscr{C})=\bigcup_{a \in \Sigma} \operatorname{IE}(\mathscr{C}, a), \\
\overleftrightarrow{M}(\mathscr{C}, a)=\left\{e=\left(q_{1}, a, q_{2}\right) \mid e \text { is an outer edge in } \mathscr{C}\right\}, & \overleftrightarrow{M}(\mathscr{C})=\bigcup_{a \in \Sigma} \overleftrightarrow{M}(\mathscr{C}, a) .
\end{array}
$$

Observe that $Q_{\mathscr{C}}=M \subseteq Q_{\mathscr{B}}$, and hence we can apply to any state $q \in M$ the transition functions of both \mathscr{B} and \mathscr{C}.

For each letter $a \in \Sigma$ we have $\delta_{\mathscr{C}}(\bullet, a)=I E(\mathscr{C}, a) \cup \stackrel{\leftrightarrow}{M}(\mathscr{C}, a)$ and $\left.\delta_{\mathscr{B}}(\bullet, a)\right|_{M}=\left\{\left(q_{1}, a, q_{2}\right) \in \delta_{\mathscr{B}}(\bullet, a) \mid q_{1} \in\right.$ $M\}=I E(\mathscr{B}, a) \cup \vec{M}(\mathscr{B}, a)$.

Observe that the mappings

$$
\psi_{\text {start }}: I E(\mathscr{B}, a) \cup \vec{M}(\mathscr{B}, a) \rightarrow I E(\mathscr{C}, a) \cup \overleftrightarrow{M}(\mathscr{C}, a)
$$

and

$$
\psi_{\mathrm{end}}: I E(\mathscr{B}, a) \cup \overleftarrow{M}(\mathscr{B}, a) \rightarrow I E(\mathscr{C}, a) \cup \overleftrightarrow{M}(\mathscr{C}, a)
$$

are bijections. Both these bijections map inner edges to inner edges. The mapping $\psi_{\text {start }}$ maps outgoing edges to outer edges and $\psi_{\text {end }}$ maps ingoing edges to outer edges. The mapping $\psi_{\text {start }}$ preserves starting points of edges and $\psi_{\text {end }}$ preserves end points of edges.
Proposition 8. $\left|Q_{\mathscr{C}}\right|=|M| \leq(2 \ell-1)(n-1)$.
Proof. Since $\mathrm{d} f_{w}(\mathscr{B})=n-1$, there are at most $n-1$ empty states of \mathscr{B} during the action of the word w on the automaton \mathscr{B}, that is $\left|Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{k}\right)\right| \leq n-1$ for all $k, 0 \leq k \leq \ell$. Hence, the inequalities $|M(1, k)| \leq n-1$ and $|M(2, k)| \leq n-1$ hold for every $k, 1 \leq k \leq \ell$. The set $M(2,1)$ is empty. Thus,

$$
|M|=\left|\bigcup_{k=1}^{\ell} M(1, k) \cup \bigcup_{k=2}^{\ell} M(2, k)\right| \leq(2 \ell-1)(n-1)
$$

Now we need an auxiliary construction. Let $s=a_{1} a_{2} \cdots a_{t} \in \Sigma^{*}$ be an arbitrary word and $a \in \Sigma$ be an arbitrary letter. We define an automaton $\mathscr{L}(s, a)$. We start with the incomplete automaton whose state set is $Q_{\mathscr{L}}=\left\{b_{1}, b_{2}, \ldots, b_{t+1}\right\}$ and whose edges are

$$
\left(b_{1}, a_{1}, b_{2}\right),\left(b_{2}, a_{2}, b_{3}\right), \ldots,\left(b_{t}, a_{t}, b_{t+1}\right),\left(b_{t+1}, a, b_{1}\right)
$$

After that we complete the automaton to a permutation automaton over Σ in an arbitrary way. Finally, we remove the edge $\left(b_{t+1}, a, b_{1}\right)$. We call the incomplete automaton $\mathscr{L}(s, a)=\left\langle Q_{\mathscr{L}}, \Sigma, \delta \mathscr{L}\right\rangle$ the buffer automaton of the word s with the input-output letter a. The state b_{1} of the automaton $\mathscr{L}(s, a)$ is called the key state and is denoted by $K S(\mathscr{L})$.

It is convenient to imagine that instead of the removed edge $\left(b_{t+1}, a, b_{1}\right)$, the automaton $\mathscr{L}(s, a)$ has got two 'open' edges $\left(\bullet, a, b_{1}\right)$ and $\left(b_{t+1}, a, \bullet\right)$ with undefined starting and end points respectively as shown on Fig. 3. We shall use such undefined starting and end points to attach buffer automata to the automaton \mathscr{C}.

Fig. 4. Attaching a buffer automaton.
Let $e=\left(q_{1}, a, q_{2}\right)$ be an outer edge of the automaton \mathscr{C} and let $\mathscr{L}(s, a)=\langle Q \mathscr{L}, \Sigma, \delta \mathscr{L}\rangle$ be an arbitrary buffer automaton whose input-output letter is a.
Then we define the operation $\mathscr{C} \stackrel{e}{\oplus} \mathscr{L}(s, a)$ of attaching the buffer automaton $\mathscr{L}(s, a)$ to the DFA \mathscr{C} instead of the edge e (Fig. 4). The result of this operation is a new automaton $\mathscr{T}=\left\langle Q_{\mathscr{T}}, \Sigma, \delta_{\mathscr{T}}\right\rangle$ defined as follows:

$$
\begin{aligned}
& Q_{\mathscr{T}}=Q_{\mathscr{C}} \cup Q_{\mathscr{L}}=Q_{\mathscr{C}} \cup\left\{b_{1}, b_{2}, \ldots, b_{t+1}\right\} \\
& \delta_{\mathscr{T}}(q, c)= \begin{cases}\delta_{\mathscr{C}}(q, c), & \text { if } q \in Q_{\mathscr{C}} \backslash\left\{q_{1}\right\} \\
\delta_{\mathscr{C}}(q, c), & \text { if } q=q_{1}, c \neq a \\
b_{1}, & \text { if } q=q_{1}, c=a \\
\delta_{\mathscr{L}}(q, c), & \text { if } q \in\left\{b_{1}, b_{2}, \ldots, b_{t}\right\} \\
\delta_{\mathscr{L}}(q, c), & \text { if } q=b_{t+1}, c \neq a \\
q_{2}, & \text { if } q=b_{t+1}, c=a .\end{cases}
\end{aligned}
$$

We call the state q_{2} the output of the attached buffer automaton $\mathscr{L}(s, a)$ and we denote this state by out \mathscr{L}.
Let $\left\{\left(p_{i}, a_{i}, q_{i}\right)=e_{i} \mid i \in\{1, \ldots, r\}\right\} \subseteq \overleftrightarrow{M}(\mathscr{C})$ be a subset of the set of outer edges of \mathscr{C} and let $\left\{x_{i} \mid x_{i} \in \Sigma^{*}\right\}_{i=1}^{r}$ be a set of words. We can attach buffer automata simultaneously instead of r outer edges of the automaton \mathscr{C}. We denote the result of this operation by

$$
\begin{equation*}
\mathscr{D}=\left\langle Q_{\mathscr{D}}, \Sigma, \delta_{\mathscr{D}}\right\rangle=\mathscr{C}_{\stackrel{e_{1}}{\oplus}}^{\oplus} \mathscr{L}_{1}\left(x_{1}, a_{1}\right) \stackrel{e_{2}}{\oplus} \cdots \stackrel{e_{r}}{\oplus} \mathscr{L}_{r}\left(x_{r}, a_{r}\right) . \tag{1}
\end{equation*}
$$

The automaton \mathscr{D} depends on the choice of the set of outer edges e_{i} and the choice of the set of words x_{i}. Therefore we have a series of automata of the form (1).
Proposition 9. Any automaton \mathscr{D} of the form (1) is a DFA.
Proof. It is obvious due to the definitions of a buffer automaton and the operation of attaching a buffer automaton.
The next lemma gives an important property of these automata.
Lemma 10. Every DFA \mathscr{D} of the form (1) satisfies the condition

$$
Q_{\mathscr{D}} \backslash \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w_{k}\right)=Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{k}\right)
$$

for every $k, 0 \leq k \leq \ell$.
Proof. Let $\bar{M}=Q_{\mathscr{B}} \backslash M$. Let $L=\bigcup_{i=1}^{r} Q_{\mathscr{L}_{i}}$, where $Q_{\mathscr{L}_{i}}$ is the state set of the buffer automaton \mathscr{L}_{i}. Then the state sets of the automata \mathscr{B} and \mathscr{D} can be represented as $Q_{\mathscr{B}}=M \cup \bar{M}$ and $Q_{\mathscr{D}}=M \cup L$.

Let $D_{k}=Q_{\mathscr{D}} \backslash \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w_{k}\right), B_{k}=Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{k}\right)$ be the sets of empty states of the automata \mathscr{D} and respectively \mathscr{B} after the action of the prefix w_{k}. Arguing by contradiction, we choose the minimal integer k $(0 \leq k \leq \ell)$ with the property $D_{k} \neq B_{k}$. Then there is a state $q \in\left(B_{k} \backslash D_{k}\right) \cup\left(D_{k} \backslash B_{k}\right)$. It is clear that

$$
q \in\left(B_{k} \backslash D_{k}\right) \cup\left(D_{k} \backslash B_{k}\right) \subseteq B_{k} \cup D_{k} \subseteq \bar{M} \cup M \cup L .
$$

First we show that $q \notin L$, then that $q \notin \bar{M}$ and finally that $q \notin M$. This will yield a contradiction as desired.
Step 1. We prove that $q \notin L$.
It is clear that $k \neq 0$, since w_{0} is the empty word and $D_{0}=\varnothing=B_{0}$. Hence by the choice of k we have

$$
D_{k-1}=B_{k-1}=Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{k-1}\right)=M(1, k-1) \subseteq M .
$$

In particular, all states of the buffer automata $\mathscr{L}_{i}(1 \leq i \leq r)$ are covered by tokens after the action of w_{k-1} on the set $Q_{\mathscr{D}}$, because $Q_{\mathscr{L}_{i}} \cap M=\varnothing$.

Let $w_{k}=w_{k-1} a$. Consider an arbitrary buffer automaton \mathscr{L}_{i} attached instead of the edge e_{i}. If $e_{i}=\left(p_{i}, b, q_{i}\right)$, $b \neq a$, then the automaton \mathscr{L}_{i} is covered by tokens after the action of the word w_{k} on \mathscr{D} because a acts as a permutation on the set $Q_{\mathscr{L}_{i}}$ by the definition of buffer automata.

If $e_{i}=\left(p_{i}, a, q_{i}\right)$, then there is an outgoing edge $\left(p_{i}, a, r_{i}\right)=\psi_{\text {start }}^{-1}\left(e_{i}\right)$ of \mathscr{B} corresponding to e_{i}. We have $p_{i} \in \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{k-1}\right)$ by Lemma 5. Hence p_{i} is covered by a token in \mathscr{D} after the action of w_{k-1}. Therefore the transformation $\delta_{\mathscr{D}}(\bullet, a)$ pushes the token into $Q \mathscr{L}_{i}$. There is only one edge $f_{i}=\left(s_{i}, a, q_{i}\right)$ outgoing from the set $Q \mathscr{L}_{i}$ in \mathscr{D} and there is no pair of edges labeled by a with a common end point in \mathscr{L}_{i}. It means that the number of tokens in $Q_{\mathscr{L}_{i}}$ is not decreasing during the action of a and the transformation $\delta_{\mathscr{D}}(\bullet, a)$ pops the token from $Q_{\mathscr{L}_{i}}$ via the edge f_{i}. \mathscr{L}_{i} is covered after the action of w_{k} and the state q_{i} is also covered. That is $Q_{\mathscr{L}_{i}} \subseteq \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w_{k}\right), q_{i} \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w_{k}\right)$.

Therefore, $q \notin L$.
Step 2. We prove that $q \notin \bar{M}$. Indeed, by the definition of the set $M(1, k)$, we have $\bar{M} \subseteq \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w_{k}\right)$ whence $q \notin \bar{M}$.

Step 3. We prove that $q \notin M$.
Suppose that $q \in M$. We divide the proof into two cases.
Case 1. The state q is the end point of some ingoing edge $f=(p, a, q)$ of the automaton \mathscr{B}.
The state $p \in \bar{M}$ is covered by a token after the action of w_{k-1} by Lemma 6 . Hence q is covered by a token after the action of w_{k} in the automaton \mathscr{B}. Thus, $q \notin B_{k}$. The edge $\psi_{\text {end }}(f)=(s, a, q)$ is an outer edge of the automaton.

If this edge is replaced in \mathscr{D} by a buffer automaton, then, as we have shown on Step $1, q \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w_{k}\right)$, that is, $q \notin D_{k}$. This contradicts the condition $q \in B_{k} \cup D_{k}$.

If the edge $\psi_{\text {end }}(f)=(s, a, q)$ is not replaced in \mathscr{D} by a buffer automaton, then the state s is the starting point of an outgoing edge $\psi_{\text {start }}^{-1}\left(\psi_{\text {end }}(f)\right)$. Hence by Lemma 5 the state s is covered after the action of w_{k-1} in the automaton \mathscr{B}. In view of the equality $B_{k-1}=D_{k-1}$ this implies that the state s is covered after the action of w_{k-1} in the automaton \mathscr{D}. Therefore q is covered after the action of w_{k} in the automaton \mathscr{D}, that is $q \notin D_{k}$. This again contradicts the condition $q \in B_{k} \cup D_{k}$.

Case 2. There is no ingoing edge labeled by the letter a in \mathscr{B} with the end point q.
This means that there is no outer edge labeled by a with the end point q in \mathscr{C}. Therefore any edge $e=(p, a, q)$ in \mathscr{B} or in \mathscr{D} is an inner edge. Thus, $p \in M$. The sets of inner edges of the automata \mathscr{B} and \mathscr{D} coincide. If there is an edge $e=(p, a, q)$ such that $p \notin B_{k-1}=D_{k-1}$, then $q \notin B_{k}$ and $q \notin D_{k}$. If there is no edge $e=(p, a, q)$ such that $p \notin B_{k-1}=D_{k-1}$, then $q \in B_{k}$ and $q \in D_{k}$. Both these conclusions contradict the condition $q \in\left(B_{k} \backslash D_{k}\right) \cup\left(D_{k} \backslash B_{k}\right)$.

Corollary 11. For any DFA \mathscr{D} of the form $(1), \mathrm{d} f_{w}(\mathscr{D})=\mathrm{d} f_{w}(\mathscr{B})=n-1$.
The last step of the proof consists in choosing an n-compressible automaton \mathscr{D} of the form (1).
Let $p \in Q_{\mathscr{B}}$ and $v \in \Sigma^{*}$. We call the sequence of edges

$$
\operatorname{tr}(p, v)=\left\{\left(\delta_{\mathscr{B}}\left(p, v_{i-1}\right), v[i], \delta_{\mathscr{B}}\left(p, v_{i}\right)\right)\right\}_{i=1}^{|v|}
$$

the trace of the word v from the state p.
Lemma 12. Suppose $p \in Q_{\mathscr{B}}, v \in \Sigma^{*}$ and \mathscr{D} is a DFA of the form (1). If $\operatorname{tr}(p, v) \subseteq \operatorname{IE}(\mathscr{B})$, then $\delta_{\mathscr{B}}(p, v)=$ $\delta_{\mathscr{D}}(p, v)$.

Proof. Since $\operatorname{tr}(p, v) \subseteq \operatorname{IE}(\mathscr{B})$, the path $\operatorname{tr}(p, v)$ contains no outgoing edges. Hence, the edges $\left(\delta_{\mathscr{B}}\left(p, v_{i-1}\right), v[i], \delta_{\mathscr{B}}\left(p, v_{i}\right)\right)$ and $\left(\delta_{\mathscr{D}}\left(p, v_{i-1}\right), v[i], \delta_{\mathscr{D}}\left(p, v_{i}\right)\right)$ coincide for every $i, 1 \leq i \leq|v|$.

Proposition 13. There exists an n-compressible DFA $\mathscr{D}=\left\langle Q_{\mathscr{D}}, \Sigma, \delta_{\mathscr{D}}\right\rangle$ of the form (1) such that $\mathrm{d} f_{w}(\mathscr{D})<n$ and $\left|Q_{\mathscr{D}}\right| \leq|M|+n+1$.

Proof. By Corollary 11, $\mathrm{d} f_{w}(\mathscr{D})=n-1$ for any automaton \mathscr{D} of the form (1). Our aim is to choose an automaton \mathscr{D} of the form (1), two different states $G, H \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right)$ and a word Z such that $\delta_{\mathscr{D}}(G, Z)=\delta_{\mathscr{D}}(H, Z)$. This means that the states G and H are covered by tokens after the action of w and the word Z removes one of the tokens. Hence the automaton \mathscr{D} is n-compressible. If we find G, H, Z and $\mathscr{D}=\left\langle Q_{\mathscr{D}}, \Sigma, \delta_{\mathscr{D}}\right\rangle$, where $\left|Q_{\mathscr{D}}\right| \leq|M|+n+1$, then we complete the proof of the theorem.

Recall that $\mathrm{d} f_{w}(\mathscr{B})=n-1$ and the automaton \mathscr{B} is n-compressible. It means that there exists a word $v \in \Sigma^{*}$ such that $d f_{v}(\mathscr{B}) \geq n$. Note that $d f_{w v}(\mathscr{B}) \geq n$. Then there are two different states $p, r \in \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right)(p \neq r)$ and a word $u=a_{1} a_{2} \cdots a_{k} \in \Sigma^{*}$ such that $\delta_{\mathscr{B}}(p, u)=\delta_{\mathscr{B}}(r, u)$. Without loss of generality, we may assume that $\delta_{\mathscr{B}}\left(p, u_{k-1}\right) \neq \delta_{\mathscr{B}}\left(r, u_{k-1}\right)$. Let $q=\delta_{\mathscr{B}}(p, u)$. Applying Proposition 4 to the states $\delta_{\mathscr{B}}\left(p, u_{k-1}\right)$ and $\delta_{\mathscr{B}}\left(r, u_{k-1}\right)$ and the letter a_{k} we obtain that $q \in M$.

Let $N=\left\{j\left|0 \leq j \leq|u|, \delta_{\mathscr{B}}\left(p, u_{j}\right) \notin M\right.\right.$ or $\left.\delta_{\mathscr{B}}\left(r, u_{j}\right) \notin M\right\}$. If $N=\varnothing$, i.e. $\operatorname{tr}(p, u) \subseteq \operatorname{IE}(\mathscr{B})$ and $\operatorname{tr}(r, u) \subseteq I E(\mathscr{B})$; then by Lemma $12, \delta_{\mathscr{C}}(r, u)=\delta_{\mathscr{B}}(r, u)=\delta_{\mathscr{B}}(p, u)=\delta_{\mathscr{C}}(p, u)$. This means that we can put $\mathscr{D}=\mathscr{C}, G=p, H=r$ and $Z=u$. Note that $\left|Q_{\mathscr{D}}\right|=|M| \leq|M|+n+1$.

Suppose that $N \neq \varnothing$. We define $j=\max N$. Note that $j<|u|$ because $\delta_{\mathscr{B}}(p, u)=\delta_{\mathscr{B}}(r, u) \in M$. Let $p_{1}=\delta_{\mathscr{B}}\left(p, u_{j}\right), p_{2}=\delta_{\mathscr{B}}\left(p, u_{j+1}\right), r_{1}=\delta_{\mathscr{B}}\left(r, u_{j}\right), r_{2}=\delta_{\mathscr{B}}\left(r, u_{j+1}\right), a=u[j+1]$. We denote the word $a_{j+2} \ldots a_{k}$ by v, whence $u=u_{j} a v$.

Case 1. Assume that $p_{1} \notin M$ and $r_{1} \notin M$.
Then $e_{1}=\left(p_{1}, a, p_{2}\right)$ and $e_{2}=\left(r_{1}, a, r_{2}\right)$ are different ingoing edges of the automaton \mathscr{B}. Let $f_{1}=\psi_{\text {end }}\left(e_{1}\right)$ and $f_{2}=\psi_{\text {end }}\left(e_{2}\right)$ be the corresponding outer edges of the automaton \mathscr{C}. Consider two identical buffer automata $\mathscr{L}_{1}(\lambda, a)$ and $\mathscr{L}_{2}(\lambda, a)$ of the empty word λ with the input-output letter a. Let $\mathscr{D}=\mathscr{C} \mathscr{C}_{1}^{f_{1}} \mathscr{L}_{1}(\lambda, a) \stackrel{f_{2}}{\oplus} \mathscr{L}_{2}(\lambda, a)$. Since the mapping $\psi_{\text {end }}$ preserves the end points of edges, we have out $\mathscr{L}_{1}=p_{2}$ and out $\mathscr{L}_{2}=r_{2}$. Hence

$$
\delta_{\mathscr{D}}\left(K S\left(\mathscr{L}_{1}\right), \lambda a v\right)=\delta_{\mathscr{D}}\left(\text { out } \mathscr{L}_{1}, v\right)=\delta_{\mathscr{D}}\left(p_{2}, v\right) \stackrel{\text { Lemma }}{=}{ }^{12} \delta_{\mathscr{B}}\left(p_{2}, v\right)=q
$$

and

$$
\delta_{\mathscr{D}}\left(K S\left(\mathscr{L}_{2}\right), \lambda a v\right)=\delta_{\mathscr{D}}\left(\text { out } \mathscr{L}_{2}, v\right)=\delta_{\mathscr{D}}\left(r_{2}, v\right) \stackrel{\text { Lemma }}{=}{ }^{12} \delta_{\mathscr{B}}\left(r_{2}, v\right)=q .
$$

Since $K S\left(\mathscr{L}_{1}\right) \notin Q_{\mathscr{B}}$ and $K S\left(\mathscr{L}_{2}\right) \notin Q_{\mathscr{B}}$, we have $K S\left(\mathscr{L}_{1}\right) \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right)$ and $K S\left(\mathscr{L}_{2}\right) \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right)$ by Lemma 10 . Note that $\left|Q_{\mathscr{D}}\right|=|M|+2 \leq|M|+n+1$. Now we can put $G=K S\left(\mathscr{L}_{1}\right), H=K S\left(\mathscr{L}_{2}\right)$ and $Z=v$.

Case 2. Assume that exactly one of the states p_{1} and r_{1} does not belong to the set M. Without loss of generality we suppose that $p_{1} \in M$ while $r_{1} \notin M$.

Case 2a. Assume that there exists a word $x \in \Sigma^{*}$ and a state $s \in \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right)$ such that $\operatorname{tr}(s, x) \subseteq \operatorname{IE}(\mathscr{B})$ and $\delta_{\mathscr{B}}(s, x)=p_{1}$. We choose the pair (x, s) such that the word x is the shortest with this property. Then the path $\operatorname{tr}(s, x)$ visits each of its state only once. Furthermore, $\delta_{\mathscr{B}}\left(s, x_{i}\right) \notin \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right)$ for each $i, 1 \leq i \leq|x|$.

Since $\left|Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right)\right|=n-1$, we obtain $|x| \leq n-1$. Note that the edge $e=\left(r_{1}, a, r_{2}\right)$ is an ingoing edge of \mathscr{B}. Let $f=\psi_{\text {end }}(e)$ be the corresponding outer edge of \mathscr{C}. We put $\mathscr{D}=\mathscr{C} \stackrel{f}{\oplus} \mathscr{L}(x, a)$. Note that $\left|Q_{\mathscr{O}}\right| \leq|M|+n \leq|M|+n+1$.

Since $K S(\mathscr{L}) \notin Q_{\mathscr{B}}$, we have $K S(\mathscr{L}) \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right)$ by Lemma 10 . Note that $s \in Q_{\mathscr{D}}$, because $s \in M$. Since $s \in \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right)$, we have

$$
s \notin Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right){ }^{\text {Lemma }}={ }^{10} Q_{\mathscr{D}} \backslash \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right),
$$

whence $s \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right)$.
By the definition of the state s we have

$$
\delta_{\mathscr{D}}(s, x a v) \stackrel{\text { Lemma }}{=}{ }^{12} \delta_{\mathscr{B}}(s, x a v)=\delta_{\mathscr{B}}\left(p_{1}, a v\right)=q
$$

By the definition of buffer automata we obtain that

$$
\delta_{\mathscr{D}}(K S(\mathscr{L}), x a v)=\delta_{\mathscr{D}}(\text { out } \mathscr{L}, v)=\delta_{\mathscr{D}}\left(r_{2}, v\right) \stackrel{\text { Lemma }}{=}{ }^{12} \delta_{\mathscr{B}}\left(r_{2}, v\right)=q .
$$

Now we can put $G=K S(\mathscr{L}), H=s$ and $Z=x a v$.
Case 2b. Assume that there is no word $x \in \Sigma^{*}$ and no state $s \in \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right)$ such that $\operatorname{tr}(s, x) \subseteq \operatorname{IE}(\mathscr{B})$ and $\delta_{\mathscr{B}}(s, x)=p_{1}$.

Suppose that $\operatorname{tr}\left(p, u_{j}\right) \subseteq I E(\mathscr{B})$. Then we have a pair $\left(u_{j}, p\right)$ such that $\operatorname{tr}\left(p, u_{j}\right) \subseteq I E(\mathscr{B})$ and $\delta_{\mathscr{B}}\left(p, u_{j}\right)=p_{1}$. This contradicts the assumption of this case. Hence, $\operatorname{tr}\left(p, u_{j}\right) \nsubseteq \operatorname{IE}(\mathscr{B})$. This means that there is a triple (b, x, s) such that $b \in \Sigma, x \in \Sigma^{*}, s \in Q_{\mathscr{B}} \backslash M, \operatorname{tr}\left(\delta_{\mathscr{B}}(s, b), x\right) \subseteq \operatorname{IE}(\mathscr{B})$ and $\delta_{\mathscr{B}}(s, b x)=p_{1}$. We fix a triple (b, x, s) such that the word x is the shortest with these properties. Let $t=\delta_{\mathscr{B}}(s, b)$. Then the path $\operatorname{tr}(t, x)$ visits each of its state only once.

Note that $\forall i, 0 \leq i \leq|x|, \delta_{\mathscr{B}}\left(t, x_{i}\right) \notin \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right)$. Otherwise, there is a number i such that $\delta_{\mathscr{B}}\left(t, x_{i}\right) \in$ $\delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right)$, whence the pair $\left(x[i+1] x[i+2] \ldots, \delta_{\mathscr{B}}\left(t, x_{i}\right)\right)$ contradicts the assumption of this case.

Since $\left|Q_{\mathscr{B}} \backslash \delta_{\mathscr{B}}\left(Q_{\mathscr{B}}, w\right)\right|=n-1$, we obtain $|x| \leq n-2$.
Note that the edges $e_{1}=(s, b, t)$ and $e_{2}=\left(r_{1}, a, r_{2}\right)$ are ingoing edges of the automaton \mathscr{B}.
Subcase 2b1. Assume that $e_{1} \neq e_{2}$.
Let $f_{1}=\psi_{\mathrm{end}}\left(e_{1}\right)$ and $f_{2}=\psi_{\text {end }}\left(e_{2}\right)$ be the corresponding outer edges of the automaton \mathscr{C}. Consider the buffer automata $\mathscr{L}_{1}(\lambda, b)$ and $\mathscr{L}_{2}(b x, a)$. We put $\mathscr{D}=\mathscr{C} \stackrel{f_{1}}{\oplus} \mathscr{L}_{1} \stackrel{f_{2}}{\oplus} \mathscr{L}_{2}$. Then $\left|Q_{\mathscr{D}}\right| \leq|M|+n+1$.

Since $K S\left(\mathscr{L}_{1}\right) \notin Q_{\mathscr{B}}$ and $K S\left(\mathscr{L}_{2}\right) \notin Q_{\mathscr{B}}$, we have $K S\left(\mathscr{L}_{1}\right) \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right)$ and $K S\left(\mathscr{L}_{2}\right) \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right)$ by Lemma 10.

By the definition of buffer automata we obtain that

$$
\delta_{\mathscr{D}}\left(K S\left(\mathscr{L}_{1}\right), \lambda \text { bxav }\right)=\delta_{\mathscr{D}}\left(\text { out } \mathscr{L}_{1}, \text { xav }\right)=\delta_{\mathscr{D}}(t, \text { xav }) \stackrel{\text { Lemma }}{=}{ }^{12} \delta_{\mathscr{B}}(t, \text { xav }) .
$$

By the choice of the states s and t we have

$$
\delta_{\mathscr{B}}(t, x a v)=\delta_{\mathscr{B}}(s, b x a v)=\delta_{\mathscr{B}}\left(p_{1}, a v\right)=q .
$$

By the definition of buffer automata we obtain that

$$
\delta_{\mathscr{D}}\left(K S\left(\mathscr{L}_{2}\right), \text { bxav }\right)=\delta_{\mathscr{D}}\left(\text { out } \mathscr{L}_{2}, v\right)=\delta_{\mathscr{D}}\left(r_{2}, v\right) \stackrel{\text { Lemma }}{=}{ }^{12} \delta_{\mathscr{B}}\left(r_{2}, v\right)=q .
$$

Now we can put $G=K S\left(\mathscr{L}_{1}\right), H=K S\left(\mathscr{L}_{2}\right)$ and $Z=$ bxav.
Subcase 2b2. Assume that $e_{1}=e_{2}$, i.e. $s=r_{1}, t=r_{2}, b=a$.
Let $f=\psi_{\text {end }}\left(e_{1}\right)$ be the corresponding outer edge of the automaton \mathscr{C}. Consider the buffer automaton $\mathscr{L}(a x, a)$. We put $\mathscr{D}=\mathscr{C} \stackrel{f}{\oplus} \mathscr{L}$. Then $\left|Q_{\mathscr{D}}\right| \leq|M|+n \leq|M|+n+1$.

Let $o=\delta_{\mathscr{B}}(K S(\mathscr{L}), a x)$. Since $K S(\mathscr{L}) \notin Q_{\mathscr{B}}$ and $o \notin Q_{\mathscr{B}}$, we have $K S(\mathscr{L}) \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right)$ and $o \in \delta_{\mathscr{D}}\left(Q_{\mathscr{D}}, w\right)$ by Lemma 10 .

By the definition of buffer automata we obtain that

$$
\delta_{\mathscr{D}}(o, \text { axav })=\delta_{\mathscr{D}}(\text { out } \mathscr{L}, \text { xav })=\delta_{\mathscr{D}}(t, \text { xav }) \stackrel{\text { Lemma }}{=}{ }^{12} \delta_{\mathscr{B}}(t, \text { xav }) .
$$

By the choice of the states s and t we have

$$
\delta_{\mathscr{B}}(t, x a v)=\delta_{\mathscr{B}}(s, a x a v)=\delta_{\mathscr{B}}\left(p_{1}, a v\right)=q .
$$

By the definition of a buffer automaton we obtain that

$$
\delta_{\mathscr{D}}(K S(\mathscr{L}), \text { axav })=\delta_{\mathscr{D}}(\text { out } \mathscr{L}, v)=\delta_{\mathscr{D}}\left(r_{2}, v\right) \stackrel{\text { Lemma }}{=}{ }^{12} \delta_{\mathscr{B}}\left(r_{2}, v\right)=q .
$$

Hence, $\delta_{\mathscr{D}}(o, \operatorname{axav})=\delta_{\mathscr{D}}(K S(\mathscr{L})$, axav $)$. Thus, we can put $G=K S(\mathscr{L}), H=o$ and $Z=a x a v$.
By combining Lemma 2, Propositions 8 and 13, we obtain the proof of Theorem 1.

Acknowledgement

This work was supported by the Russian Foundation for Basic Research, grant 05-01-00540.

References

[1] D.S. Ananichev, A. Cherubini, M.V. Volkov, An inverse automata algorithm for recognizing 2-collapsing words, in: M. Ito, M. Toyama (Eds.), Developments in Language Theory, in: Lect. Notes Comp. Sci., vol. 2450, Springer-Verlag, Berlin, Heidelberg, New York, 2003, pp. $270-282$.
[2] D.S. Ananichev, A. Cherubini, M.V. Volkov, Image reducing words and subgroups of free groups, Theoret. Comput. Sci. 307 (2003) 77-92.
[3] D.S. Ananichev, I.V. Petrov, M.V. Volkov, Collapsing words: A progress report, Internat. J. Found. Comput. Sci. 17 (2006) $507-518$.
[4] S. Margolis, J.-E. Pin, M.V. Volkov, Words guaranteeing minimum image, Internat. J. Found. Comput. Sci. 15 (2004) $259-276$.
[5] A. Mateesku, A. Salomaa, Aspects of classical language theory, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. I. Word. Language, Grammar, Springer-Verlag, Berlin, Heidelberg, New York, 1997, pp. 175-251.
[6] E.V. Pribavkina, On some properties of the Language of 2-collapsing words, Internat. J. Found. Comput. Sci. 17 (2006) $665-676$.
[7] N. Sauer, M.G. Stone, Composing functions to reduce image size, Ars Combin. 31 (1991) 171-176.

[^0]: E-mail address: ilja_petrov@list.ru.

