Available online at www.sciencedirect.com
JOURNAL OF

ScienceDirect Approximation
Theory

ELSEVIER Journal of Approximation Theory 162 (2010) 1204-1210 _
www.elsevier.com/locate/jat

Necessary conditions for metrics in integral
Bernstein-type inequalities™

Polina Yu. Glazyrina

Department of Mathematics and Mechanics, Ural State University, Lenin Avenue, 51, Ekaterinburg, 620083, Russia

Received 23 February 2009; accepted 28 December 2009
Available online 6 January 2010

Communicated by Paul Nevai

Abstract

Let 7, be the set of all trigonometric polynomials of degree at most . Denote by &+ the class of all
functions ¢: (0, 0c0) — R of the form ¢ (#) = ¥ (Inu), where ¥ is nondecreasing and convex on (—o00, 00).
In 1979, Arestov extended the classical Bernstein inequality ||T,{ lc <nlTullc, Tn € 7n, to metrics defined
by e ot:

2 2
/(; (/J(IT,i(l)I)dZS/O p|Ty()Ndt, Ty € Tp.

We study the question whether it is possible to extend the class ®T, and prove that under certain
assumptions &7 is the largest possible class.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Let 7, be the set of all trigonometric polynomials of degree at most n with complex
coefficients. The inequality

’
ITallc <nlTullc.  Tw € Ta, )]
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is well known in approximation theory and is called the Bernstein inequality. Inequality (1) turns
into equality iff T,,(t) = acosnt + bsinnt, where a, b € C. The inequality was stated by
Bernstein and Landau for polynomials with real coefficients (for details, see [5, Section 10, pp.
25-26; Section 3.4, p. 527], [8, Ch. 6, Theorems 1.2.4, 1.2.5]) in 1912-1914 and by Riesz for
polynomials with complex coefficients ([10], [11, Vol. 2, Ch. 10]) in 1914.

We say that a function ¢ is increasing on an interval I if p(u1) < @(u2) for all u; < uo,
ur,us € I; @ is convex on I if p(aui + (1 — @)uz) < ap(u) + (1 — a)p(uz) forall uy, us € 1
and o € [0, 1]; ¢ is concave on [ if —¢ is convex on I.

In 1933, Zygmund [11, Vol. 2, Ch. 10, (3.25)] proved the following statement. If ¢ is an
increasing and convex function on [0, c0), then

2 2
[ etmone = [ ono)a. 1,1, @
0 0
For ¢(u) = u”, p > 1, inequality (2) implies the Bernstein inequality in the space L ,:

IT,0p < nlTullp, T €T,

1
where I £1, = (2 &7 1f@rar) "
In 1979, Arestov [1-3] found weaker conditions on functions ¢ which provide the validity of
inequality (2). Before we give Arestov’s result, we introduce some notation [2,4].
We denote by ¢ the class of functions ¢ defined on (0, co) with the following properties:

(1) ¢ is locally absolutely continuous;
(ii) ¢ increases on (0, c0);
(iii) ug’(u) increases on (0, 00).

Put ¥ (v) = ¢(e?); that is, ¢ (u) = ¥ (Inu). Clearly, ¢ belongs to ®* iff the function v is
increasing and convex on (—o00, 00). For example, all increasing convex functions, the functions
Inu, InT u = max{0, Inu}, In(1 + u”), and u?, p > 0, belong to o,

We denote by P, the set of all algebraic polynomials of degree at most n with complex
coefficients. Let polynomials A, and P, from P, be given by 4,(z) = Y ;_, (Z) Axzk and

Py(2) = > }_o (1) cxz*. The polynomial

n

Apa@ =Y () et (3)

k=0

is called the composition of A, and P, (for details, see [9, Vol. 2, Section 5]). Suppose that A,
is fixed, then Eq. (3) defines a linear operator on P,, which we denote by the same symbol A,.
For example, if A,(z) = (1 +¢%2)", 6 € R, then (A, P,)(z) = P,(e!z) is the operator of
rotation by angle 6; in particular, 4,(z) = (1 + z)" defines the identity operator. The polynomial
An(z) = (1 +2)""!(z — 1) defines the differential operator

(AnP) (@) = 2PL(2) — %Pn(z»

In the sequel, if P, € P, has degree m < n, then we say that z = oo is a zero of P, with
multiplicity n — m. Let 73,9 be the set of all polynomials P, € P, such that all n zeros of P, lie
in the unit disk |z| < I, and let P;° be the set of all polynomials P, € P, such that all zeros
of P, lie in the domain |z| > 1. Furthermore, we say that an operator A, belongs to the class



1206 PYu. Glazyrina / Journal of Approximation Theory 162 (2010) 1204-1210

20if A, P% C PY, and that A, belongs to the class 2%° if 4, P> C P>, Using Theorems 151
and 152 from [9, Section 5] (see also [2]), one can easily prove that A,, € Q,? iff the polynomial
A, € 73,?, and that A, € £22° iff the polynomial A, € P:°. Finally, let {2, = Q,? U £2%°.

Theorem A (Arestov [2]). If ¢ € ®T and A,, € £, then, for all P, € P,,

2 . 2n .
A<M@&WM¢5A @(C (A, Pa(eM)]) dr, “4)

where C(A,) = max{ [Xol, |Xn|}. Equality holds in (4) if and only if P, has the form
P,(z) = a7", P,(z)=a, or Py(z)=az"+b (a,beC),
depending on whether

A, e A, €% or A, e20N0%°

The space 7, can be identified with the space P, by the mapping T,,(t) = e " Py, (el"),
P>, € P>,; moreover,

T2 = [Pl T 0] = (Ao Pon) (€)].

Note that Ay, € an N 257 and C(Az,) = n. Hence, inequality (2) is a consequence of
Theorem A.

Professor Arestov asked the author whether it is possible to extend the class T in Theorem A.
In this paper we prove that, under certain assumptions, ¢ is the largest possible class.

2. Main result

We study inequality (4) for the class & = &, of functions ¢ defined on (0, co) with the
following properties:

(i) ¢ is continuous on (0, c0);
(ii) ¢ increases on (0, 00);
(iii) for all P, € Py, [ ¢(|Pa(e™)]) di < oco.
An example of the function ¢(#) = —exp(l/u) shows that the third condition cannot be
removed.

Now we will introduce a class @~ C @ with the property that, for every ¢ € @7, inequal-
ity (4) is not satisfied (as will be stated in Theorem 1).

Definition. Denote by @~ the set of all functions ¢ (1) = ¥ (Inu), where ¢ € @, and there exist
points v; < v, < vz and a real number k such that the function

Y)—k-v

(i) increases on [v1, vs«] and decreases on [v, V2],
(i1) does not coincide with a constant in any neighborhood of the point v.
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Remark 1. Let us clarify this definition. Suppose that ¢ ¢ & and the corresponding function
¥ has a locally absolutely continuous derivative v’ everywhere. Then ¥ (v,) < O for some v.
Hence, there exist points v| < vy < v such that

w/(v) > w/(v*)7 v E [vla U*]s
') < ¥ (v), v e [vs, 2]

Furthermore, for the function ¥ we have the representation

(5
v
V@) =¥ 0 = v =)+ [ () = v @) dn
Vs
It follows from (5) that the function v (v) — ¥/ (v4)(v — vy) increases on [v1, v4] and decreases
on [vy, va]. Therefore, ¢ belongs to ™.

Thus, if ¢ € @ has a locally absolutely continuous derivative on (0, 00), then either ¢ € ot
orp € 7.

Remark 2. If  is strictly concave on some interval [vy, v2], then p € ¢7.

Remark 3. Let us give two examples of functions from &~ . For the function ¢(1) = u/(1 4 u),
by means of which convergence in measure can be defined [6, Ch. 4, Ex. 4.7.60°], the
corresponding function ¥ (v) = e”/(1 + eV) is concave on [0, co) and, therefore, ¢ € ¢~

Let Co(v), v € [0, 1], be the Cantor function [6, Ch. 3, Prop. 3.6.5], and let [v] denote the
integer part of v. The singular function ¢ defined by ¢(e’) = Co(v — [v]) + [v] also belongs
to &~

Remark 4. Ttis sufficient to consider only one of the following two cases: 4, € 29 or A, € 2°.
Indeed, applying the methods of de Bruijn and Springer [7] and Arestov [3], consider the map
I = I, on P, defined by

(IPy)(z) =7"Pu(1/2), Pn € Py
It is clear that | P, (e")| = |(I P,)(e™ )|, t € [0, 27], P, € Py, and

| POED] = | (A PIE™)| = [(TADTPD) ™|, A € B

Moreover, the map / is a bijection of P° onto PY. Therefore, if, say, 4, € 2°°, then I A, € 2.
Thus, inequality (7) is valid for an operator A, and a polynomial P, iff it is valid for /4, and
IP,.

The polynomial A, (z) = c(1 + e?z)" defines on P, the operator
(AnPy)(2) = cPy(e®2), ceC,0eR. 6)

For this operator, inequality (4) turns into equality for every P, € P,, and so operators (6) are
excluded from the further consideration.

Theorem 1. If ¢ € &7, A, € (2, and A, is not of the form (6), then there exists a polynomial
P, € P, such that

2

/ o (1P @) 0 > | e (canize) ™

where C(A,) = max{|ko|, |)»n|}-
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Proof. In view of Remark 4, it is sufficient to prove the theorem for

Ae 0 A, #c+e%)", ceC,0eR. )

Without loss of generality, we can assume that A, = 1. We claim that |[1g| < 1 and |X,,_1| < 1.
Indeed, by conditions (8), A, has n zeros according to multiplicity z, ..., z, and all the zeros
lie on the unit circle. Consequently,

<1

1
Aol =lz1- - zal < 1, |)‘nl|=‘;(Z1+'-'+zn)

The last inequality turns into equality only if z; = --- = z, = €' for some 6 € R, but then 4,
is an operator of the form (6) and we do not consider such operators. Consequently, under our
assumptions, C(4,) = max{ [Xol, [An |} = 1, and we must prove that there exists a polynomial
P € P, such that

/Ozn ¢ (14,PE"1) di — /02” o (IP@E)1) dr > 0. ©)

Suppose that ¢ (1) = ¥ (Inu), points v1 < v, < vy and a constant k satisfy conditions (i) and
(i) of the definition of the class ¢~. Consider the function

o) =@) —k-Inu =y (nu) —k -Inu,

and set u; = eV, uy = €2, u, = e¥*. Clearly, @ increases on [uy, us], decreases on [u,, uz], and
does not coincide with a constant in any neighborhood of the point u..
Let us construct a polynomial P € P, that satisfies (9) in the form

P(z)=m"Yz—a), a€©,1), m=>0.

We have A, P(z) = m(z" — A—1az" ") = mz" Yz — M_1a),
2

2 2 .
/ dt:/ m e"—kn_la’ dt:f m
0 0 0

Let Q(e") = m(e" — |A,_1|a); then inequality (9) is equivalent to the inequality
2 ) .
/0 [¢ (12e1) = (1PE"])] @ > 0. (10)

Let us compare |P(ei’ ) |2 and |Q(ei’) |2 on the interval [0, 277]. We have

A, P(e) e — [An_1lal dt.

2 5 5
‘P(e”) =m*(14+a” —2acost),

(1)

it 2_ 2 2.2
(") m-(1+|A —2|x
= n—1l"a |[An—1lacost),

and, consequently,

14+a%> —2acost — 1 — |a_1]?a® + 2|An_1la cost

([P = o)

a(1 = [n1l)(a + [an—1la — 2 cost). (12)
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Lett, = arccos((a + |An—1la)/ 2). Evidently, ¢, € (0, ), and it can be verified easily that

|P(e™)] = |Q™)| = my/1 — [An_ila. (13)

It follows from (11) that the absolute values | P(e'’)| and | Q(e'")| are even functions of 7 that are
increasing on [0, 7]; by (12),

10N > [PE")], te€[0,t), and [Q(")] <|PE"], e (t, 7] (14)

Thus, we conclude that the values |Q(ei’)| and |P(ei’)| belong to the interval [|P(1)],
|P(—1)|] forall ¢ € [0, 27] and

[P(D)|=mdA —a), |P(=1)=m+a). (15)

Now, we choose parameters m and a such that

‘ P (eit*)

=|o@E")

=ux and [[P(D],|P(=DI] C [u1, u2]. (16)

This can be done the following way. Let a; be a sequence such that a — 40, k — oo. Define
my by

miy/ 1 — |kn_1|a£ = Uy.

Then my — uy, k — o0. Therefore,
mp(l —ag) = uye >uy, and mp(1+ag) —> us < un.

Thus we can take a = ax and m = my, for a sufficiently large value of k.
Combining (14) and (16), we conclude that

up < |P(D)] < [PEH] < Q@€ <ux, 1€ (0,1),

. 4 (17)
uy < 10@E"| < [PE)| < |P(=D)| <uz, t€ty,m).

It remains to verify inequality (10) for the constructed polynomial P. By the well-known
Jensen formula (see, for example, [9, Section 3, Problem 175]),

2 . 2m .
/ In|P(e")|dt = / In|me" —a)|dt =2 Inm,
0 0

2 . 2 .
/ In|Q(e")|dt = / In|me" — |A,_ila)| =27 Inm.
0 0

Thus,
/Ozn [ (12€1) = (1PE"I)] o
= [[e (2@ ) = o (1PE1) — k110" + kin 1P ar
0
= 2[ [7(12@1) = (1PEl)] o
= 2/0[* [7(12@1) =7 (1PEI) ] o +2/:

[5 (IQ(ei‘)l) -3 (|P(eif)|)] dr.
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Relations (17) yield that the last expression is greater than 0. This completes the proof of the
theorem. [J

Corollary 1. For any ¢ € &, there exists T,, € T, such that
2 2
[ etmona> [ oamona.
0 0

For smooth functions ¢ € &, Arestov’s theorem and Theorem 1 give the necessary and suffi-
cient conditions on ¢ for validity of inequality (4).

Corollary 2. Suppose that an operator A, € (2, is not of the form (6) and a function ¢ € @ has
a locally absolutely continuous derivative. Then inequality (4) is valid if and only if ¢ € ®™.

The proof immediately follows from Theorem A, Remark 1, and Theorem 1.
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