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Abstract

Let Tn be the set of all trigonometric polynomials of degree at most n. Denote by Φ+ the class of all
functions ϕ: (0,∞)→ R of the form ϕ(u) = ψ(ln u), where ψ is nondecreasing and convex on (−∞,∞).
In 1979, Arestov extended the classical Bernstein inequality ‖T ′n‖C ≤ n‖Tn‖C , Tn ∈ Tn , to metrics defined
by ϕ ∈ Φ+:∫ 2π

0
ϕ(|T ′n(t)|)dt ≤

∫ 2π

0
ϕ(n|Tn(t)|)dt, Tn ∈ Tn .

We study the question whether it is possible to extend the class Φ+, and prove that under certain
assumptions Φ+ is the largest possible class.
c© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Let Tn be the set of all trigonometric polynomials of degree at most n with complex
coefficients. The inequality

‖T ′n‖C ≤ n‖Tn‖C , Tn ∈ Tn, (1)

I This work was supported by the Russian Foundation for Basic Research (Project No. 08-01-00213) and by the
Program for State Support of Leading Scientific Schools of the Russian Federation (Project No. NSh-1071.2008.1).

E-mail address: polina.glazyrina@usu.ru.

0021-9045/$ - see front matter c© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2009.12.009

http://www.elsevier.com/locate/jat
mailto:polina.glazyrina@usu.ru
http://dx.doi.org/10.1016/j.jat.2009.12.009


P.Yu. Glazyrina / Journal of Approximation Theory 162 (2010) 1204–1210 1205

is well known in approximation theory and is called the Bernstein inequality. Inequality (1) turns
into equality iff Tn(t) = a cos nt + b sin nt , where a, b ∈ C. The inequality was stated by
Bernstein and Landau for polynomials with real coefficients (for details, see [5, Section 10, pp.
25–26; Section 3.4, p. 527], [8, Ch. 6, Theorems 1.2.4, 1.2.5]) in 1912–1914 and by Riesz for
polynomials with complex coefficients ([10], [11, Vol. 2, Ch. 10]) in 1914.

We say that a function ϕ is increasing on an interval I if ϕ(u1) ≤ ϕ(u2) for all u1 ≤ u2,
u1, u2 ∈ I ; ϕ is convex on I if ϕ

(
αu1 + (1− α)u2

)
≤ αϕ(u1)+ (1− α)ϕ(u2) for all u1, u2 ∈ I

and α ∈ [0, 1]; ϕ is concave on I if −ϕ is convex on I .
In 1933, Zygmund [11, Vol. 2, Ch. 10, (3.25)] proved the following statement. If ϕ is an

increasing and convex function on [0,∞), then∫ 2π

0
ϕ
(
|T ′n(t)|

)
dt ≤

∫ 2π

0
ϕ
(
n|Tn(t)|

)
dt, Tn ∈ Tn . (2)

For ϕ(u) = u p, p ≥ 1, inequality (2) implies the Bernstein inequality in the space L p:

‖T ′n‖p ≤ n‖Tn‖p, Tn ∈ Tn,

where ‖ f ‖p =

(
1

2π

∫ 2π
0 | f (t)|

p dt
)1/p

.

In 1979, Arestov [1–3] found weaker conditions on functions ϕ which provide the validity of
inequality (2). Before we give Arestov’s result, we introduce some notation [2,4].

We denote by Φ+ the class of functions ϕ defined on (0,∞) with the following properties:

(i) ϕ is locally absolutely continuous;
(ii) ϕ increases on (0,∞);

(iii) uϕ′(u) increases on (0,∞).

Put ψ(v) = ϕ(ev); that is, ϕ(u) = ψ(ln u). Clearly, ϕ belongs to Φ+ iff the function ψ is
increasing and convex on (−∞,∞). For example, all increasing convex functions, the functions
ln u, ln+ u = max{0, ln u}, ln(1+ u p), and u p, p > 0, belong to Φ+.

We denote by Pn the set of all algebraic polynomials of degree at most n with complex
coefficients. Let polynomials Λn and Pn from Pn be given by Λn(z) =

∑n
k=0

( n
k

)
λk zk and

Pn(z) =
∑n

k=0

( n
k

)
ck zk . The polynomial

Λn Pn(z) =
n∑

k=0

(n

k

)
λkck zk (3)

is called the composition of Λn and Pn (for details, see [9, Vol. 2, Section 5]). Suppose that Λn
is fixed, then Eq. (3) defines a linear operator on Pn , which we denote by the same symbol Λn .
For example, if Λn(z) = (1 + eiθ z)n , θ ∈ R, then (Λn Pn)(z) = Pn(eiθ z) is the operator of
rotation by angle θ ; in particular, Λn(z) = (1+ z)n defines the identity operator. The polynomial
∆n(z) = n

2 (1+ z)n−1(z − 1) defines the differential operator

(∆n Pn)(z) = z P ′n(z)−
n

2
Pn(z).

In the sequel, if Pn ∈ Pn has degree m < n, then we say that z = ∞ is a zero of Pn with
multiplicity n − m. Let P 0

n be the set of all polynomials Pn ∈ Pn such that all n zeros of Pn lie
in the unit disk |z| ≤ 1, and let P∞n be the set of all polynomials Pn ∈ Pn such that all zeros
of Pn lie in the domain |z| ≥ 1. Furthermore, we say that an operator Λn belongs to the class
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Ω0
n if Λn P 0

n ⊂ P 0
n , and that Λn belongs to the class Ω∞n if Λn P∞n ⊂ P∞n . Using Theorems 151

and 152 from [9, Section 5] (see also [2]), one can easily prove that Λn ∈ Ω0
n iff the polynomial

Λn ∈ P 0
n , and that Λn ∈ Ω∞n iff the polynomial Λn ∈ P∞n . Finally, let Ωn = Ω0

n ∪ Ω∞n .

Theorem A (Arestov [2]). If ϕ ∈ Φ+ and Λn ∈ Ωn , then, for all Pn ∈ Pn ,∫ 2π

0
ϕ
(
|Λn Pn(eit )|

)
dt ≤

∫ 2π

0
ϕ
(
C(Λn)|Pn(eit )|

)
dt, (4)

where C(Λn) = max
{
|λ0|, |λn|

}
. Equality holds in (4) if and only if Pn has the form

Pn(z) = azn, Pn(z) ≡ a, or Pn(z) = azn
+ b (a, b ∈ C),

depending on whether

Λn ∈ Ω0
n , Λn ∈ Ω∞n , or Λn ∈ Ω0

n ∩ Ω∞n .

The space Tn can be identified with the space P2n by the mapping Tn(t) = e−int P2n(eit ),
P2n ∈ P2n ; moreover,

|Tn(t)| = |P2n(eit )|, |T ′n(t)| = |(∆2n P2n)(eit )|.

Note that ∆2n ∈ Ω0
2n ∩ Ω∞2n and C(∆2n) = n. Hence, inequality (2) is a consequence of

Theorem A.
Professor Arestov asked the author whether it is possible to extend the class Φ+ in Theorem A.

In this paper we prove that, under certain assumptions, Φ+ is the largest possible class.

2. Main result

We study inequality (4) for the class Φ = Φn of functions ϕ defined on (0,∞) with the
following properties:

(i) ϕ is continuous on (0,∞);
(ii) ϕ increases on (0,∞);

(iii) for all Pn ∈ Pn ,
∫ 2π

0 ϕ
(
|Pn(eit )|

)
dt <∞.

An example of the function ϕ(u) = − exp(1/u) shows that the third condition cannot be
removed.

Now we will introduce a class Φ− ⊂ Φ with the property that, for every ϕ ∈ Φ−, inequal-
ity (4) is not satisfied (as will be stated in Theorem 1).

Definition. Denote by Φ− the set of all functions ϕ(u) = ψ(ln u), where ϕ ∈ Φ, and there exist
points v1 < v∗ < v2 and a real number k such that the function

ψ(v)− k · v

(i) increases on [v1, v∗] and decreases on [v∗, v2],
(ii) does not coincide with a constant in any neighborhood of the point v∗.
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Remark 1. Let us clarify this definition. Suppose that ϕ 6∈ Φ+ and the corresponding function
ψ has a locally absolutely continuous derivative ψ ′ everywhere. Then ψ ′′(v∗) < 0 for some v∗.
Hence, there exist points v1 < v∗ < v2 such that

ψ ′(v) > ψ ′(v∗), v ∈ [v1, v∗],

ψ ′(v) < ψ ′(v∗), v ∈ [v∗, v2].
(5)

Furthermore, for the function ψ we have the representation

ψ(v)− ψ ′(v∗)(v − v∗) = ψ(v∗)+

∫ v

v∗

(
ψ ′(η)− ψ ′(v∗)

)
dη.

It follows from (5) that the function ψ(v) − ψ ′(v∗)(v − v∗) increases on [v1, v∗] and decreases
on [v∗, v2]. Therefore, ϕ belongs to Φ−.

Thus, if ϕ ∈ Φ has a locally absolutely continuous derivative on (0,∞), then either ϕ ∈ Φ+

or ϕ ∈ Φ−.

Remark 2. If ψ is strictly concave on some interval [v1, v2], then ϕ ∈ Φ−.

Remark 3. Let us give two examples of functions from Φ−. For the function ϕ(u) = u/(1+ u),
by means of which convergence in measure can be defined [6, Ch. 4, Ex. 4.7.60◦], the
corresponding function ψ(v) = ev/(1+ ev) is concave on [0,∞) and, therefore, ϕ ∈ Φ−.

Let C0(v), v ∈ [0, 1], be the Cantor function [6, Ch. 3, Prop. 3.6.5], and let [v] denote the
integer part of v. The singular function ϕ defined by ϕ(ev) = C0(v − [v]) + [v] also belongs
to Φ−.

Remark 4. It is sufficient to consider only one of the following two cases: Λn ∈ Ω0
n or Λn ∈ Ω∞n .

Indeed, applying the methods of de Bruijn and Springer [7] and Arestov [3], consider the map
I = In on Pn defined by

(I Pn)(z) = zn Pn(1/z), Pn ∈ Pn .

It is clear that |Pn(eit )| = |(I Pn)(e−it )|, t ∈ [0, 2π ], Pn ∈ Pn , and∣∣∣(Λn Pn)(eit )

∣∣∣ = ∣∣∣(I (Λn Pn))(e−it )

∣∣∣ = ∣∣∣((IΛn)(I Pn)
)
(e−it )

∣∣∣ , Λn ∈ Ωn .

Moreover, the map I is a bijection of P∞n onto P 0
n . Therefore, if, say, Λn ∈ Ω∞n , then IΛn ∈ Ω0

n .
Thus, inequality (7) is valid for an operator Λn and a polynomial Pn iff it is valid for IΛn and
I Pn .

The polynomial Λn(z) = c(1+ eiθ z)n defines on Pn the operator

(Λn Pn)(z) = cPn(eiθ z), c ∈ C, θ ∈ R. (6)

For this operator, inequality (4) turns into equality for every Pn ∈ Pn , and so operators (6) are
excluded from the further consideration.

Theorem 1. If ϕ ∈ Φ−, Λn ∈ Ωn , and Λn is not of the form (6), then there exists a polynomial
Pn ∈ Pn such that∫ 2π

0
ϕ
(
| (Λn Pn) (eit )|

)
dt >

∫ 2π

0
ϕ
(

C(Λn)|Pn(eit )|
)

dt, (7)

where C(Λn) = max
{
|λ0|, |λn|

}
.
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Proof. In view of Remark 4, it is sufficient to prove the theorem for

Λn ∈ Ω0
n , Λn(z) 6= c(1+ eiθ z)n, c ∈ C, θ ∈ R. (8)

Without loss of generality, we can assume that λn = 1. We claim that |λ0| ≤ 1 and |λn−1| < 1.
Indeed, by conditions (8), Λn has n zeros according to multiplicity z1, . . . , zn and all the zeros
lie on the unit circle. Consequently,

|λ0| = |z1 · · · zn| ≤ 1, |λn−1| =

∣∣∣∣1n (z1 + · · · + zn)

∣∣∣∣ ≤ 1.

The last inequality turns into equality only if z1 = · · · = zn = eiθ for some θ ∈ R, but then Λn
is an operator of the form (6) and we do not consider such operators. Consequently, under our
assumptions, C(Λn) = max

{
|λ0|, |λn|

}
= 1, and we must prove that there exists a polynomial

P ∈ Pn such that∫ 2π

0
ϕ
(
|Λn P(eit )|

)
dt −

∫ 2π

0
ϕ
(
|P(eit )|

)
dt > 0. (9)

Suppose that ϕ(u) = ψ(ln u), points v1 < v∗ < v2 and a constant k satisfy conditions (i) and
(ii) of the definition of the class Φ−. Consider the function

ϕ̃(u) = ϕ(u)− k · ln u = ψ(ln u)− k · ln u,

and set u1 = ev1 , u2 = ev2 , u∗ = ev∗ . Clearly, ϕ̃ increases on [u1, u∗], decreases on [u∗, u2], and
does not coincide with a constant in any neighborhood of the point u∗.

Let us construct a polynomial P ∈ Pn that satisfies (9) in the form

P(z) = mzn−1(z − a), a ∈ (0, 1), m > 0.

We have Λn P(z) = m(zn
− λn−1azn−1) = mzn−1(z − λn−1a),∫ 2π

0

∣∣∣Λn P(eit )

∣∣∣ dt =
∫ 2π

0
m
∣∣∣eit
− λn−1a

∣∣∣ dt =
∫ 2π

0
m
∣∣∣eit
− |λn−1|a

∣∣∣ dt.

Let Q(eit ) = m(eit
− |λn−1|a); then inequality (9) is equivalent to the inequality∫ 2π

0

[
ϕ
(
|Q(eit )|

)
− ϕ

(
|P(eit )|

)]
dt > 0. (10)

Let us compare
∣∣P(eit )

∣∣2 and
∣∣Q(eit )

∣∣2 on the interval [0, 2π ]. We have∣∣∣P(eit )

∣∣∣2 = m2(1+ a2
− 2a cos t),∣∣∣Q(eit )

∣∣∣2 = m2
(

1+ |λn−1|
2a2
− 2|λn−1|a cos t

)
,

(11)

and, consequently,

1

m2

(∣∣∣P(eit )

∣∣∣2 − ∣∣∣Q(eit )

∣∣∣2) = 1+ a2
− 2a cos t − 1− |λn−1|

2a2
+ 2|λn−1|a cos t

= a
(
1− |λn−1|

)(
a + |λn−1|a − 2 cos t

)
. (12)
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Let t∗ = arccos
(
(a + |λn−1|a)/2

)
. Evidently, t∗ ∈ (0, π), and it can be verified easily that

|P(eit∗)| = |Q(eit∗)| = m
√

1− |λn−1|a2. (13)

It follows from (11) that the absolute values |P(eit )| and |Q(eit )| are even functions of t that are
increasing on [0, π]; by (12),

|Q(eit )| > |P(eit )|, t ∈ [0, t∗), and |Q(eit )| < |P(eit )|, t ∈ (t∗, π]. (14)

Thus, we conclude that the values
∣∣Q(eit )

∣∣ and
∣∣P(eit )

∣∣ belong to the interval [|P(1)|,
|P(−1)|] for all t ∈ [0, 2π ] and

|P(1)| = m(1− a), |P(−1)| = m(1+ a). (15)

Now, we choose parameters m and a such that∣∣∣P(eit∗)

∣∣∣ = ∣∣∣Q(eit∗)

∣∣∣ = u∗ and
[
|P(1)|, |P(−1)|

]
⊂ [u1, u2]. (16)

This can be done the following way. Let ak be a sequence such that ak → +0, k → ∞. Define
mk by

mk

√
1− |λn−1|a2

k = u∗.

Then mk → u∗, k →∞. Therefore,

mk(1− ak)→ u∗ > u1, and mk(1+ ak)→ u∗ < u2.

Thus we can take a = ak and m = mk for a sufficiently large value of k.
Combining (14) and (16), we conclude that

u1 ≤ |P(1)| < |P(eit )| < |Q(eit )| < u∗, t ∈ (0, t∗),

u∗ < |Q(eit )| < |P(eit )| < |P(−1)| ≤ u2, t ∈ (t∗, π).
(17)

It remains to verify inequality (10) for the constructed polynomial P . By the well-known
Jensen formula (see, for example, [9, Section 3, Problem 175]),∫ 2π

0
ln |P(eit )| dt =

∫ 2π

0
ln |m(eit

− a)| dt = 2π ln m,∫ 2π

0
ln |Q(eit )| dt =

∫ 2π

0
ln |m(eit

− |λn−1|a)| = 2π ln m.

Thus,∫ 2π

0

[
ϕ
(
|Q(eit )|

)
− ϕ

(
|P(eit )|

)]
dt

=

∫ 2π

0

[
ϕ
(
|Q(eit )|

)
− ϕ

(
|P(eit )|

)
− k ln |Q(eit )| + k ln |P(eit )|

]
dt

= 2
∫ π

0

[
ϕ̃
(
|Q(eit )|

)
− ϕ̃

(
|P(eit )|

)]
dt

= 2
∫ t∗

0

[
ϕ̃
(
|Q(eit )|

)
− ϕ̃

(
|P(eit )|

)]
dt + 2

∫ π

t∗

[
ϕ̃
(
|Q(eit )|

)
− ϕ̃

(
|P(eit )|

)]
dt.
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Relations (17) yield that the last expression is greater than 0. This completes the proof of the
theorem. �

Corollary 1. For any ϕ ∈ Φ−, there exists Tn ∈ Tn such that∫ 2π

0
ϕ
(
|T ′n(t)|

)
dt >

∫ 2π

0
ϕ (n|Tn(t)|) dt.

For smooth functions ϕ ∈ Φ, Arestov’s theorem and Theorem 1 give the necessary and suffi-
cient conditions on ϕ for validity of inequality (4).

Corollary 2. Suppose that an operator Λn ∈ Ωn is not of the form (6) and a function ϕ ∈ Φ has
a locally absolutely continuous derivative. Then inequality (4) is valid if and only if ϕ ∈ Φ+.

The proof immediately follows from Theorem A, Remark 1, and Theorem 1.
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[1] V.V. Arestov, S.N. Bernšteı̆n inequalities for algebraic and trigonometric polynomials, Dokl. Akad. Nauk SSSR
246 (6) (1979) 1289–1292 (in Russian). Translation in Soviet Math. Dokl. 20 (3) (1979) 600–603.

[2] V.V. Arestov, Integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser.
Mat. 45 (1) (1981) 3–22 (in Russian). Translation in Math. USSR-Izv. 18 (1982) 1–18.

[3] V.V. Arestov, Integral inequalities for algebraic polynomials on the unit circle, Mat. Zametki 48 (4) (1990) 7–18
(in Russian). Translation in Math. Notes 48 (4) (1990) 977–984.
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