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Abstract 
 
The conductance of ballistic graphene at the neutrality point is due to 
coherent electron tunneling between the leads, the so called 
pseudodiffusive regime. The conductance scales as function of the 
sample dimensions in the same way as in a diffusive metal, despite the 
difference in the physical mechanisms involved. The electron-electron 
interaction modifies this regime, and plays a role similar to that of the 
environment in macroscopic quantum phenomena. We show that 
interactions, and the presence of external gates, change substantially 
the transport properties, and can lead to a diverging resistivity at the 
neutrality point. 
 
 
 
The electrical conductivity of solids is determined by electron or hole 
excitations at the Fermi level. One of the most striking features of 
graphene is its finite metallic conductivity when the Fermi surface 
shrinks to a point, and the density of charge carriers vanishes1,2. The 
origin of this minimal conductivity is a problem of fundamental 
relevance. Early experiments suggested that the conductivity at the 
neutrality point was of order of a conductance quantum, while recent 
measurements in high mobility samples give a much lower value3,4. 
Carriers become localized when the conductivity drops below the 
quantum unit, but in graphene localization is suppressed by “Klein” 
tunneling5. Calculations show that graphene remains metallic at the 
neutrality point. The same conclusion can be reached assuming that 
graphene is defect-free and ballistic at the neutrality point, due to an 
essentially quantum phenomenon, transmission via evanescent 
waves6-8. We analyze here the effect of the electron-electron 



interaction in this regime, and, thus, on the minimal conductivity of 
graphene. 
 
Experiments show that the Coulomb interaction between electrons 
change substantially the electronic properties near the Dirac point in 
high mobility suspended systems9. The effect of interactions on the 
conductivity of graphene at the Dirac point has been addressed 
theoretically, using diagrammatic methods and starting from the Kubo 
expression for the conductivity10-13. The conclusion of these works is 
that the metallic nature of graphene near the Dirac point is not 
changed by interactions. We consider here the alternative description 
where the conductance of a ballistic graphene sample is studied using 
Landauer's formalism, adding later the electron-electron interaction, 
and come to essentially different conclusions. It turns out that the 
interaction effects suppress essentially the transport via evanescent 
waves leading to temperature (or sample-size) dependent minimal 
conductivity, in agreement with recent experimental observations4. 
Conduction in a perfect ballistic graphene sample at the Dirac point is 
due to tunneling of electrons with well defined momentum parallel to 
the direction of current6,7. The summation of the transmission 
coefficients of all these parallel momentum channels give rise to a 
conductance inversely proportional to the system length, defined as 
the transport direction, and inversely proportional to the 
perpendicular direction. This scaling with the sample dimensions is the 
same as in a diffusive metal, leading to the term “pseudodiffusive 
regime”7. This approach can be generalized to graphene bilayers14-16, 
and to samples of arbitrary shapes17,18. We assume that the tunneling 
electrons can excite electron-hole pairs and other electronic 
excitations of the system, which are considered to be independent 
degrees of freedom. This approach can be justified by replacing the 
excitations of the electronic system by bosons, each of which is weakly 
coupled to the tunneling electron19,20. This approach has proven very 
useful in the study of quantum tunneling of particles interacting with 
their environment. Formally, the method can be viewed as a 
resummation of bubble diagrams similar to the Random Phase 
Approximation21. 
 



 
 
 
 
FIG. 1. (a) Sketch of the processes considered in the text. An electron wavepacket, 
coherent in the direction normal to the direction of the current, is transferred 
between two electrodes. b) The tunneling process is accompanied by the emission 
of electron-hole pairs. c) Lowest order diagram which describes the process. 
 
We analyze transport through a rectangular graphene sample of 
dimensions 𝐿𝑥 , 𝐿𝑦, where the x axis is the current direction, and 
𝐿𝑥, 𝐿𝑦 ≫ 𝑎, where 𝑎 is the lattice spacing, see Fig. 1. For simplicity we 
use periodic boundary conditions along the y direction6. We assume 
that the wave function is coherent along the y direction and the 
transverse momentum is quantized, 𝑘𝑦 = 2𝜋𝑛 𝐿𝑦⁄ , where n is an 
integer. The tunneling along the x direction is studied by estimating the 
optimal path in imaginary time, and adding to the action along that 
path the corrections due to the interactions with the environment. The 
barrier through which tunneling takes place is 𝑉(𝑥) = ℏv𝐹𝑘𝑦 for 
0 ≤ 𝑥 ≤ 𝐿𝑥, and v𝐹  is the Fermi velocity. The path under the barrier is 
simply 𝑥(𝜏) = v𝐹𝜏, with 0 ≤ 𝜏 ≤ 𝐿𝑥 v𝐹⁄  . 
The tunneling amplitude, in the absence of interaction effects, is 
𝑇0�𝑘𝑦� ≅ 𝑒−𝑘𝑦𝐿𝑥 . The correction to the action due to the interactions 
with the environment can be written as22 
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2 ∫ 𝑑𝜏 ∫ 𝑑𝜏′∫ 𝑑𝑞
2𝜋

+∞
−∞

𝛽
0

+∞
−∞ 𝑒𝑖𝑞[𝑥(𝜏)−𝑥(𝜏´)]𝑣𝑞2〈𝑇��𝜌𝑞(𝜏)𝜌−𝑞(𝜏′)�〉               (1) 

 
where 𝛽 = 1/𝑇 is the inverse temperature, 𝑣𝑞 is the Fourier 
component of the Coulomb interaction, 𝜌𝑞  is the electron density 
operator and 𝑇�  is the time-ordering operator. Using the fluctuation-
dissipation theorem and proceeding further as in21 we come to the 
expression 
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where 𝑊(𝑞,𝜔) is a density of states which includes the density of 
states of modes in the environment, and their coupling to the tunneling 
electron 
 

𝑊(𝑞,𝜔) = 𝑣𝑞
𝜖(𝑞,𝜔)

                                          (3) 
 
and 𝜖(𝑞,𝜔) is the dielectric function. The tunneling amplitude is finally. 
𝑇�𝑘𝑦� ≅ 𝑇0�𝑘𝑦�𝑒−𝛿𝑆. 
For the effective one-dimensional (1D) problem defined here, we 
have22 
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where 𝜖0 is the dielectric constant of the environment. This expression 
interpolates between the expected 1D behavior for 𝑞𝐿𝑦 ≪ 1, and the 
2D Coulomb interaction, normalized to the width of the sample for 
𝑞𝐿𝑦  ≫ 1. 
We consider first an environment made up of the electron-hole 
excitations of graphene at the neutrality point. The dielectric function 
can be written as 𝜖(𝑞,𝜔) = 1 + 𝑣𝑞𝜒1𝐷(𝑞,𝜔) where 𝜒1𝐷(𝑞,𝜔) is the 
polarization function of our 1D problem. We assume that 𝐿𝑦 ≤ 𝐿𝑥. 
Then, the leading contributions to 𝛿𝑆 come from 𝑞 ≃ 𝐿𝑥−1, and we use 
the lower line in eq.(4). The dielectric function of a graphene ribbon 
was calculated in24. In wide ribbons, 𝐿𝑦 ≫ 𝑎, the Coulomb potential 
does not mix subbands, and we can approximate23 
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In the ballistic regime, where 𝑥(𝜏) = v𝐹𝜏, the time integrals in eq. 2 can 
be reduced to:  
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where 𝛼 = (2𝜋𝑒2) (𝜖0v𝐹)⁄ , and we have kept only the leading term in 
𝐿𝑥 𝑎⁄ . 
We now consider the changes induced in the environment by the 
presence of a metallic layer. We describe the metal in terms of its 
density of states, 𝜐1𝐷 ≈ 𝐿𝑦𝜐2𝐷 , Fermi velocity, v𝐹𝑀, Fermi energy, 𝜖𝐹 , 
Fermi momentum, 𝑘𝐹, mean free path, ℓ, and diffusion coefficient, 
𝐷 = (v𝐹𝑀ℓ) 2⁄ D. The polarizability of the metal, for 𝜔 ≤ 𝜖𝐹  and 𝑞 ≤ 𝑘𝐹, 
can be approximated by 
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In the RPA approximation, the retarded interaction is given, 
approximately, by 𝑊(𝑞,𝜔) ≈ [𝜒1𝐷𝑀 (𝑞,𝜔)]−1. Then, the value of 𝛿𝑆𝑀  can 
be divided into a diffusive and a ballistic contribution 
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where 𝑔 = 𝑘𝐹ℓ is the conductivity of the metallic layer. At finite 
temperatures, 𝑇 ≠ 0, the momentum cutoff becomes 
𝑞𝑐 ≈ Max(𝐿𝑥−1,𝑇 v𝐹⁄ ).  Fig. 2 shows the temperature dependence of the 
resistivity taking into account a neutral graphene environment, 𝛿𝑆𝐺 , in 
eq. 6, and a metallic environment, 𝛿𝑆𝑀 in eq. 8. The parameters used 
for the metallic layer are appropriate for graphene away from the 
neutrality point, see Fig. 2. For this choice of parameters, the final 
conductivity is determined by the contribution from the diffusive 
modes of the metal. 
The pseudodiffusive regime can be generalized to situations with 
external magnetic fields24. The presence of a magnetic field changes the 
conductivity in the metal, due to the suppression of coherence effects. 
In addition, the classical trajectories in the neutral ballistic graphene 
layer are modified on scales comparable to the magnetic length, ℓ𝐵. A 
simple perturbative estimate of the self energy in the presence of a 
magnetic field shows that the effective interaction is modified22.  
𝑊(𝑞,𝜔) ≈ ∫𝑑𝑞′𝑒−(𝑞−𝑞′)2 ℓ𝐵

2⁄ 𝑊(𝑞′,𝜔). This 𝐵 dependent broadening 
suggests the use of the lower cutoff, 𝑞𝑐 ≈ Max(𝐿𝑥−1,𝑇 v𝐹⁄ , ℓ𝐵−1).  The 
magnetic field dependence of the inverse conductance using this 
approximation is shown in Fig. 3. Note that a numerical constant 𝑐 in 



the definition of  𝑞𝑐 will change the temperature and magnetic field 
scales, although not the qualitative trends. 
 

 
 
FIG. 2. Temperature dependence of the inverse conductance, normalized to the non 
interaction value, 𝜎0 = 𝑒2 (𝜋ℏ)⁄ , for 𝐿𝑥 = 4µ,  𝐿𝑦 = 1µ. Red: Contribution from the 
graphene excitations, 𝛿𝑆𝐺 , eq. 6. Blue: Contribution from a metallic layer, 𝛿𝑆𝑀, eq. 
8. The two terms which describe the contribution from the metal, 𝛿𝑆𝑑  and 𝛿𝑆𝑏 are 
shown in the inset. Green: diffusive part, 𝛿𝑆𝑑 in eq. 8. Magenta: ballistic part, 𝛿𝑆𝑏 in 
eq. 8. The carrier density in the metal is 𝑛 = 1011cm−1, and the elastic mean free 
path is ℓ = 100nm. 
 

 
 
FIG. 3. Magnetic field dependence of the inverse conductance for 𝑇 = 1K. The 
remaining parameters are the same as in Fig. 2. 
 
Another situation where electron tunneling is relevant is ballistic 
transport through a p-n junction25,26. The properties of a planar p-n 
junction are determined by the electric _field ℰ when the potential lies 
close to the Dirac energy, 𝑉(𝑥) ≈ 𝑒ℰ𝑥. Electrons with a well defined 
parallel momentum, 𝑘𝑦, and a dispersion  𝜀𝑘 = v𝐹�𝑘𝑥2 + 𝑘𝑦

2 have a gap of 
forbidden energies Δ𝑘𝑦 = v𝐹𝑘𝑦. Hence, an electron with momentum 𝑘𝑦 
must tunnel through a barrier through the region 
−�v𝐹𝑘𝑦� (2ℰ) ≤ 𝑥 ≤ �v𝐹𝑘𝑦� (2ℰ)⁄� . The probability of tunneling is8,25 



𝑇0�𝑘𝑦� ≈ 𝑒−�v𝐹𝑘𝑦
2� ℰ⁄ . Interactions suppress tunneling through p-n 

junctions in the manner discussed above, with the replacement 
𝐿𝑥 ↔ �v𝐹𝑘𝑦� ℰ⁄   in eq. 6 and eq. 8. For example, instead of eq. 6 we 
have: 
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This renormalization changes essentially the angular dependence of 
the tunneling probability for very small angles, �𝑘𝑦� ≪ 𝛼2 �8𝜋𝐿𝑦�� . At the 
same time, 𝑇 =1, an exact property for normal incidence8, remains 
unchanged when the electron-electron interactions taken into account. 
The changes induced in the angular dependence of the transmission 
are shown in Fig. 4. 
The dependence of the total conductance, ∝ 𝐿𝑦 (2𝜋)∫𝑑𝑘𝑦⁄  𝑇�𝑘𝑦�, on 
the electric field is changed, due to the renormalization in eq. (10), 
from √ℰ (which corresponds to the Schwinger effect, with the pair 
intensity production 𝑃 ∝ ℰ𝐺 ∝ ℰ3 2⁄ , see27,28 and references therein) to  
𝑃 ∝ ℰ2. The crossover takes place at the electric field 
ℰ ≈ (𝛼2v𝐹) �8𝜋𝐿𝑦2 �� . 
 

 
 
FIG. 4. Angular dependence of the correction due to interactions in a p-n junction. 
The p-n junction has a length of 1 nm and separates two regions of densities 
𝑛 = ±1012cm−2. The value of 𝛼 is 2.2/2. Red: Intrinsic effect in graphene at the 
neutrality point, 𝛿𝑆𝐺 , eq. 6. Blue: Effect of a metallic layer, 𝛿𝑆𝑀, eq. 8. The charge 
density in the metal is 𝑛 =  1013 cm−2. 
 
Tunneling between localized states is another mechanism which gives 
rise to a finite conductivity of graphene at the neutrality point29. The 
interaction effects discussed here will also influence this mechanism22. 
The lack of an intrinsic limit to the conductivity of ballistic graphene at 
the neutrality point suggests new ways to manipulate its value. The 



combination of quantum tunneling and interactions implies that 
ballistic graphene at the neutrality point can be used to study 
dephasing processes under a variety of external probes. 
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Suplementary information 
 
-Effective potential, equation (4). 
The Coulomb potential between coherent electron waves localized at 
positions 𝑥 and 𝑥′ is defined as 

𝑉(𝑥 − 𝑥′) = 1
𝐿𝑦2
∫ 𝑑𝑦 ∫ 𝑑𝑦𝐿𝑦
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𝜖0�(𝑥−𝑥´)2+(𝑦−𝑦´)2
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and 
𝑣𝑞 = 1

2𝜋 ∫ 𝑑𝑥𝑉(𝑥)𝑒𝑖𝑞𝑥∞
−∞                                                  (S2) 

This integral can be done analytically, leading to eq.(4). 
 

- Charge susceptibility equations (5) and (7).  
As discussed in the main text, we assume that the tunneling electrons 
can only propagate along the 𝑥 direction, while the wavefunction is 
fixed along the 𝑦 direction. The charge is homogeneous in this 
direction, 0 ≤ 𝑦 ≤ 𝐿𝑦, and 𝜌(𝑦) = 1 𝐿𝑦⁄ . Then, if we calculate the 
Fourier transform with respect to the 𝑥 coordinate, we find 
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≈ 𝐿𝑦𝜒2𝐷�𝑞𝑥, 𝑞𝑦 = 0,𝜔�                                              (S3)          
                                                                         



- Effective potential in the presence of a magnetic field.  
The existence of a Landau level at zero energy requires the 
modification of the analysis in the main text. 
We define the Hamiltonian as 

𝐻 ≡
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where ℓ𝐵 is the magnetic length. The wavefunctions are 
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⎩
⎪
⎨

⎪
⎧ � 1

𝑒𝑖𝜃� + 𝑅𝑘𝑦 �
1

𝑒−𝑖𝜃� 𝑥 < 𝐿𝑥
2

𝐴𝑘𝑦 �𝑒
�𝑥−𝑘𝑦ℓ𝐵2�

2 (2ℓ𝐵2 )�

0
� + 𝐵𝑘𝑦 �

0
𝑒−�𝑥−𝑘𝑦ℓ𝐵2�

2 (2ℓ𝐵2 )� � |𝑥| < 𝐿𝑥
2

𝑇𝑘𝑦 �
1
𝑒𝑖𝜃� 𝑥 > 𝐿𝑥

2

�         

(S5) 
where 𝑅𝑘𝑦  and 𝑇𝑘𝑦  are the reflection and transmission coefficients, 𝐴𝑘𝑦  
and 𝐵𝑘𝑦  are numerical coefficients, and 𝑒𝑖𝜃 = �𝑘𝑥 + 𝑖𝑘𝑦� �𝑘�⃗ �� . 
After some algebra, we find 
 

𝑇𝑘𝑦 = 2𝑖 sin(𝜃)
𝑒𝑖𝜃𝑒𝑘𝑦𝐿𝑥−𝑒−𝑖𝜃𝑒−𝑘𝑦𝐿𝑥

                                                   (S6) 
 

This expression is similar to that found in the pseudodiffusive regime. 
The transmission decays quickly for momenta such that �𝑘𝑦� ≫ 𝐿𝑥−1. 
The wavefunction in the barrier region is 
 

Ψ𝑘𝑦(𝑥) = 𝑇𝑘𝑦 �
𝑒�𝑥2−2𝑘𝑦ℓ𝐵2 (𝑥−𝐿𝑥 2⁄ )−𝐿𝑥2 2⁄ � (2ℓ𝐵2 )⁄

𝑒𝑖𝜃𝑒−�𝑥2−2𝑘𝑦ℓ𝐵2 (𝑥−𝐿𝑥 2⁄ )−𝐿𝑥2 2⁄ � (2ℓ𝐵2 )⁄ �                               (S7) 

 
The correction to the effective action, using perturbation theory, is of 
the form 
 

𝛿𝑆 ≈ ∫𝑑𝜏 ∫𝑑𝜏′ �Ψ𝑘𝑦[𝑥(𝜏)]�
2
�Ψ𝑘𝑦[𝑥(𝜏′)]�

2
𝑊[𝑥(𝜏)− 𝑥(𝜏′), 𝜏 − 𝜏′]   (S8)   

 



We assume that �𝑘𝑦� ≈ 𝐿𝑥−1. The leading term in �Ψ𝑘𝑦[𝑥(𝜏)]�
2

comes 
from the lower part of the spinor in eq.(S7) (the upper part is the sign 
of the magnetic field is reversed). The expression for the effective 
action acquires an exponential factor,~𝑒−[𝑥(𝜏)−𝑥(𝜏′)]2 ℓ𝐵

2⁄ .  The 
multiplication of the effective interaction by a Gaussian is equivalent to 
averaging the effective interaction in momentum space over a range of 
momenta 𝑞 ≈ ℓ𝐵−1. 
 
- Interactions and tunneling between localized states.  
Vacancies and other strong scatterers introduce resonances near the 
Dirac energy in graphene. The resulting conductivity is of order 𝑒2 ℏ⁄ . 
Transport is due t tunneling over lengths of order of the the distance 
between defects, 𝑑 ≈ 𝑛𝑑

−1 2⁄ , where 𝑛𝑑  is the density of defects. As 
discussed in the main text, the conductivity acquires a factor 𝑒−𝛿𝑆. The 
main qualitative change is that the distance 𝑑 replaces 𝐿𝑥 and 𝐿𝑦 in eqs. 
(6) and (8).  
 

                       


