Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 05-03-32087а), Фонда поддержки научных школ (грант НШ-728.2003.3).

N,N-ДИМЕТИЛ-N-БЕНЗИЛАМИН В РАДИКАЛЬНОЙПОЛИМЕРИЗАЦИИ МЕТИЛМЕТАКРИЛАТА Заикина А.В., Пузин Ю.И.

Институт органической химии УНЦ РАН, Уфа Уфимский государственный нефтяной технический университет

В радикальной полимеризации широко используются окислительновосстановительные инициирующие системы, образующиеся при взаимодействии диацилпероксидов с различными аминами. Третичные ароматические амины ускоряют разложение органических пероксидов и являются активаторами полимеризации виниловых мономеров.

Мы провели исследование кинетических зависимостей радикальной полимеризации метилметакрилата (ММА) в присутствии N,N- диметил-N-бензиламина (БАм). Обнаружено, что введение добавки в инициирующую систему с пероксидом бензоила (ПБ) приводит к росту начальной скорости (табл. 1). При этом на низких степенях конверсии мономера наблюдается замедление процесса, что характерно для систем, содержащих третичные амины. По концентрационным зависимостям определены порядки по ПБ и БАм. При 60 °С сумма порядков равна 0,5, что свидетельствует об образовании инициирующей системы радикального типа. При 45 и 30 °С с увеличением концентрации БАм происходит снижение начальной скорости полимеризации, порядки по БАм близки к 0.

Таблица 1. Влияние N,N-диметил-N-бензиламина на кинетические параметры полимеризации ММА

метры полимеризации ММА					
T, °C	$[\Pi E] \times 10^3$,	$[\text{БAM}] \times 10^3$	$W_0 \times 10^3$,	Порядок по	~
	моль/л	, моль/л	моль/л*мин	БАм	по ПБ
60	1,0	-	3,8	0,1	0,4
		0,25	3,8 5,5		
		4,0	5,5		
45	1,0	-	1,1	0	0,37
		0,25	1,2		
		2,0	1,2		
30	1,0	-	0,3	-0,1	0,27
		0,25	0,33		
		2,0	0,28		

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 05-03-32087), Фонда поддержки научных школ (грант НШ-728.2003.3)