«FullProf 2008». Кислородную нестехиометрию (δ) сложных оксидов $Sr_{1-x}Gd_xFeO_{3-\delta}$ (x=0-0.3), $Sr_{2-y}Gd_yFeO_{4\pm\delta}$ (y=0.85) и $Sr_{3-z}Gd_zFe_2O_{7-\delta}$ (z=1.9) изучали методом термогравиметрического анализа ($T\Gamma A$) как функцию температуры (в интервале 25 – 1100°C) на воздухе.

Согласно результатам РФА закаленных образцов в системе Gd-Sr-Fe-O при 1100 °C на воздухе образуются три типа твердых растворов: $Sr_{1-x}Gd_xFeO_{3-\delta}, Sr_{2-\nu}Gd_\nu FeO_{4\pm\delta}$ и $Sr_{3-z}Gd_zFe_2O_{7-\delta}$.

Согласно результатам РФА закаленных образцов в системе Gd-Sr-Fe-O при 1100° C на воздухе образуются три типа твердых растворов. Кристаллическая структура феррита стронция $SrFeO_{3-\delta}$ описывается в тетрагональной ячейке (пр.гр. I4/mmm), а $Sr_{1-x}Gd_xFeO_{3-\delta}$ ($0.05 \le x \le 0.30$) - в кубической (пр. гр. Pm3m). Рентгенограммы образцов $Sr_{1-x}Gd_xFeO_{3-\delta}$ ($0.8 \le x \le 1.0$), подобно $GdFeO_{3-\delta}$, имеют орторомбическую структуру (пр. гр. Pbnm). Образец с соотношением элементов в A и B подрешетке 2 к 1: $Sr_{1.15}Gd_{0.85}FeO_{4-\delta}$ (пр.гр. I4/mmm). Ферриты $Sr_{3-z}Gd_zFe_2O_{7-\delta}$ ($0 \le z \le 0.30$) имеют тетрагональную ячейку (пр. гр. I4/mmm). Образец состава $Sr_{1.1}Gd_{1.9}Fe_2O_{7-\delta}$ имеет тетрагональную структуру (пр. гр. P42/mnm).

Для всех однофазных образцов методом термогравиметрического анализа (ТГА) была изучена кислородная нестехиометрия (δ), как функция температуры на воздухе. Абсолютное значение кислородного дефицита определяли методами йодометрического титрования и полного восстановления образцов в токе водорода.

По результатам РФА всех исследуемых образцов, закаленных на комнатную температуру, предложен изобарно-изотермический разрез диаграммы состояния системы Gd-Sr-Fe-O при $1100\ ^{\circ}$ C на воздухе.

Работа выполнена при финансовой поддержке гранта Президента Российской Федерации для государственной поддержки молодых российских ученых — кандидатов наук № МК-6159.2016.3.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА, КИСЛОРОДНАЯ НЕСТЕХИОМЕТРИЯ И ОБЩАЯ ЭЛЕКТРОПРОВОДНОСТЬ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ

SmBaCo_{1.4}**Me**_{0.6}**O**_{6- δ} (**Me** = **Ni**, **Cu**) Зяйкин Е.И., Мычинко М.Ю., Волкова Н.Е.

3яикин Е.И., Мычинко М.Ю., Волкова Н.Е. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Сложные оксиды на основе кобальтитов самария-бария со структурой слоистого перовскита являются перспективными материалами для использования их в качестве катодов для средне- и высокотемператур-

ных ТОТЭ в связи с их высокой электронно-ионной проводимостью в широком диапазоне температур и парциальных давлений кислорода. Возможность замещать кобальт в В-подрешетке на другие 3-d металлы позволяет влиять на такие свойства как электропроводность, что увеличивает применимость материала для данных топливных элементов.

Текущая работа посвящена синтезу перовскитоподобных материалов общего состава $SmBaCo_{1.4}Me_{0.6}O_{6-\delta}$ (Me = Ni, Cu), исследованию их кристаллической структуры, кислородной нестехиометрии образца, общей электропроводности в зависимости от температуры на воздухе.

Синтез образцов проводили по глицерин-нитратной технологии. Фазовый состав полученных оксидов контролировали рентгенографически с использованием картотеки JCPDS и программного пакета "freak". Кристаллическая структура сложных оксидов SmBaCo $_{1.4}$ Me $_{0.6}$ O $_{6-\delta}$ (Me = Ni, Cu) была описана в рамках тетрагональной (пр.гр. P4/mmm) и орторомбической (пр. гр. Pmmm) элементарных ячеек для Ni и Cu соответственно, и подтверждена методом просвечивающей электронной микроскопии.

Зависимости кислородного состава образцов от температуры и парциального давления кислорода изучали методом кулонометрического титрования в широком диапазоне температур ($800 \le T$, °C ≤ 1000) и парциальных давлений кислорода ($-4 \le \log(pO_2, atm) \le -0.67$). Абсолютное значение кислородной нестехиометрии, приведенное к комнатным условиям, определяли методом йодометрического титрования.

Общую электропроводность и коэффициент Зеебека (коэффициент термо-ЭДС) образцов изучали 4-х контактным методом в широком диапазоне температур ($800 \le T$, °C ≤ 1000) и парциальных давлений кислорода ($-4 \le \log(pO_2, atm) \le -0.67$).

Установлено, что замещение кобальта в В-подрешетке на Ni и Cu приводит к значительному понижению общей электропроводности и термодинамической стабильности во всем диапазоне изученных температур и парциальных давлений, что может быть связано с большей устойчивостью для катионов Ni и Cu низких степеней окисления (+2), что приводит к увеличению концентрации вакансий кислорода и понижению концентрации доминирующих носителей заряда — дырок, локализованных на атомах кобальта.

Работа выполнена при финансовой поддержке гранта РФФИ № 16-53-45010 ИНД а.