МАТЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ ЭНЕРГОЭФФЕКТИВНОГО И ЭКОЛОГИЧЕСКИ ЧИСТОГО ЛИНЕЙНОГО ПРИВОДА

THE MATHEMATICAL STUDY OF ENERGY-EFFICIENT AND ENVIRONMENTALLY-FRIENDLY LINEAR ACTUATOR

Ромашин А. А., Смольянов И. А., Малышев Н. Е. Уральский государственный университет путей сообщения; Уральский федеральный университет, г. Екатеринбург, nubijke@mail.ru

Romashin A. A., Smolianov I. A., Malyshev N. E.
The Ural State University of Railway Transport; Ural Federal University,
Ekaterinburg

Аннотация: Рассматривается вопрос эффективности привода на магнитной подушке по сравнению с колесным транспортом. В работе рассмотрены примеры моделирования на основе метода конечных элементов и метода магнитных детализированных схем замещений.

Abstract: The question of the efficiency of the drive on a magnetic cushion compared to wheeled vehicles. The paper discusses examples of simulation-based finite element method and the method detailed magnetic equivalent circuit.

Ключевые слова: энергоэффективность; линейный асинхронный привод; моделирование.

Key words: energy efficiency; linear induction drive; simulation.

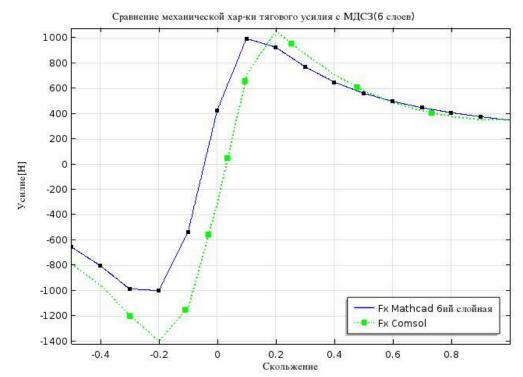
В настоящее время все чаще становятся актуальными задачи внедрения в обособленные узлы производства приводов на основе линейного асинхронного двигателя. Также данные устройства часто применяют в транспортных системах, сельском хозяйстве и робототехнике. Данные виды техники, как правило, не направлены на массовое производство. В связи с этим стоит иметь ввиду, что производство линейных машин предназначено для единичных потребителей. Основным критерием при проектировании является обоснованная энергоэффективность по сравнению с конкурентными аналогами.

Рассматривая вопрос эффективности привода на магнитной подушке в транспортных системах можно выделить ряд их преимуществ по сравнению с колесным транспортом [1]:

- Отсутствие проскальзывания колесной пары (актуальная проблема для территории Урала и Западной Сибири), в результате чего снижается износ деталей.
- Отсутствие образования гололеда на контактном проводе, что приводит к снижению затрат на его подогрев или использование специальной техники для его очистки.

 Отсутствие ограничения по скорости движения (на территории Урала и Западной Сибири), в результате территориальных особенностей местности.

Ряд авторов [2] отмечают, что наиболее целесообразно использовать электроприводы из экономических соображений, т. к. становится дешевле эксплуатация и понижается стоимость удельных затрат энергетических ресурсов (таблица). Анализ данных таблицы подтверждает вышеуказанные положительные моменты использования электрических приводов.


В статье [3] автор исследовал причины выхода из строя вагонов колесного транспорта. Можно заключить, что порядка 40 % простоя вагонов связано с выходом из строя колесной пары ввиду технологического износа. Данная статистика делает привлекательным использование привода на магнитной подушке, а также актуальным исследование данного привода.

Настоящая работа посвящена основным аспектам численного моделирования линейного асинхронного привода ДЛЯ монорельсового транспорта. Верификация результатов в виду отсутствия прототипа на данном этапе исследования проводилась с помощью сравнения результатов различными численными методами. Электромеханическая часть основывается на методе конечных элементов, реализованного в Comsol Multiphysics 5.2, а также на методе магнитных детализированных схем замещений в математическом пакете Matlab.

Удельные показатели грузоперевозок на железнодорожном транспорте

у дельные показатели грузоперевозок на железподорожном траненорте			
Наименование показателя	Единицы	2012 г.	2013 г.
	измерения		
Себестоимость перевозок всего	коп./10 (т·км)	538,423	544,799
Удельный расход электроэнергии	$\kappa B T \cdot \Psi / 10^4 \ (T \cdot \kappa M)$	117,9	114,9
на тягу поездов			
Удельный расход дизельного	кг у.т./10 ⁴ (т·км)	58,7	55,5
топлива на тягу поездов			
Цена электроэнергии на тягу	руб./кВт·ч	2,051	2,424
поездов			
Цена топлива на тягу поездов	руб./кг у. т.	17,407	19,175

Одним из основных критериев оценки линейной индукционной машины является механическая характеристика. По данной характеристике проведем оценку сходимости полученных результатов различными методами. Механическая характеристика 24-хпазового двигателя при питании от источника тока 110 А с частотой 28 Гц приведена на рисунке. Анализ представленных кривых дает понимание возможности применения при проектировании как метода конечных элементов, так и магнитных детализированных схем замещений.

Сравнение механических характеристик методом конечных элементов и магнитных детализированных схем замещений

В заключение можно сказать, что метод конечных элементов и магнитных детализированных замещений дают приблизительно схем аналогичные различной степенью детализации модели. Уменьшение результаты детализации в магнитных схемах замещения не влияет на решение обособленной конкретной существенно выигрывает при моделировании задачи, НО многоцелевой задачи, например, оптимизации. Также данный метод наиболее просто вписывается в структурные схемы автоматизации, образуя полную систему.

Список использованных источников

- 1. Структурное моделирование электромеханических систем и их элементов / В. А. Иванушкин, Ф. Н. Сарапулов, П. Шымчак. Щецин: ЩТУ, 2000. 310 с.
- 2. Зайцев А. А., Антонов Ю. Ф. Контейнерный мост Санкт-Петербург-Москва на основе магнитной левитации // Магнитолевитационные транспортные системы и технологии: тр. 2-й междунар. конф. МТСТ'14 / под ред. Ю. Ф. Антонова; Санкт-Петербург, Петербургский гос. ун-т путей сообщения, 17-20 июня 2014 г. Киров : Международный центр научно-исследовательских проектов, 2014. С. 11-23.
- 3. Ядуванкин В. В. Влияние системы «колесо-рельс» на скорость доставки грузов // Магнитолевитационные транспортные системы и технологии: тр. 2-й междунар. конф. МТСТ'14 / под ред. Ю. Ф. Антонова; Санкт-Петербург, Петербургский гос. ун-т путей сообщения, 17-20 июня 2014 г. Киров : Международный центр научно-исследовательских проектов, 2014. С. 132-134.