УДК 669.018.6:620.187

Е. Э. Юдина, А. В. Величко* Тульский государственный университет, г. Тула **sweta.novosvetloffa@yandex.ru* Научный руководитель – проф., д-р техн. наук *Г. В. Маркова*

СТРУКТУРА И СВОЙСТВА СПЛАВА Ті–22Nb–6Та ПОСЛЕ ХОЛОДНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И ОТЖИГА

Исследованы микроструктура и микротвердость сплава Ti-22Nb-6Ta после деформации е = 0,3 и последующего отжига при температурах 600 и 750 °C. Показано, что при 600 °C завершается процесс первичной рекристаллизации, а при 750 °C – собирательной. Изменение микротвердости при отжиге деформированного сплава обусловлено выделением когерентной ω-фазы.

Ключевые слова: низкомодульный сплав Ti–Nb, отжиг, микроструктура, микротвердость.

E. E. Yudina, A. V. Velichko

STRUCTURE AND PROPERTIES OF THE ALLOY Ti–22Nb–6Ta AFTER COLD PLASTIC DEFORMATION AND ANNEALING

The microstructure and microhardness of the Ti–22Nb–6Ta alloy was studied after deformation of e = 0.3 and subsequent annealing at temperatures of 600 and 750 ° C. It is shown that at 600 ° C the primary recrystallization process is completed, and at 750 ° C the collective recrystallization process is completed. The change in microhardness during annealing of the deformed alloy is due to the separation of the coherent ω phase.

Keywords: low-modulus alloy Ti–Nb, annealing, microstructure, microhardness.

Сплавы системы Ti–Nb–Ta представляют интерес, как материалы для имплантатов, поскольку эти сплавы обладают сравнительно низкими значениями модуля нормальной упругости, высокой биосовместимостью, не окисляются и не разрушаются в человеческом организме [1]. Кроме того, сплавы обладают эффектом памяти формы, который обусловлен развитием обратимого мартенситного превращения, предположительно, термоупругого типа. Однако качественного изображения микроструктуры сплавов этой системы не получено, а данные об их свойствах недостаточно широко представлены в научно-технической литературе.

[©] Юдина Е. Э., Величко А. В., 2017

Целью данной работы было изучение влияния холодной пластической деформации и последующей термической обработки (отжиг) на микроструктуру и микротвёрдость сплава Ti-22Nb-6Ta.

Материал для исследования получали вакуумно-дуговой плавкой чистых шихтовый компонентов (Ti, Nb, Ta). В табл. 1 представлен химический состав литого сплава Ti–22Nb–6Ta по основным элементам. Полученные заготовки подвергались холодной прокатке в несколько проходов без промежуточных отжигов с суммарно накопленной степенью деформации е = 0,3. После прокатки образцы отжигали при температурах 600 и 750 °C в течение 0,5 часа.

Таблица 1

% атомный		
Ti	Nb	Та
72	21	7

* — образцы для исследования предоставлены д-ра физ.-мат. наук С. Д. Прокошкиным (МИСиС)

Структуру сплава в состоянии после холодной прокатки и после деформационного отжига (ПДО) исследовали с помощью светового микроскопа «Axio Observer D1.m» фирмы Carl Zelss. Для выявления микроструктуры были использованы различные составы травителей, традиционно применяемых для титановых сплавов: 2HF:1HNO₃:17H₂O₂, 1HF:15HNO₃:5H₂O₂, 1HF:3HNO₃:6H₂O₂ и 1HF:4HNO₃:5H₂O₂. Hauлучшие результаты были получены при травлении составом: 1HF:4HNO₃:5H₂O₂ (объемные части). Микроструктуру выявили в результате шестикратного повторения процесса полирование-травление. Количественные характеристики структуры (средний условный диаметр зерна) определены методом случайных секущих по ГОСТ 5639. Объем выборки составил 390 измерений.

Микротвердость использовали в работе в качестве характеристики, позволяющей оценить влияние термомеханической обработки на механические свойства сплава. Измерения проводили на микротвердомере ПМТ-3 в соответствии с ГОСТ 9450. Прилагаемая нагрузка составляла 1 Н (100 г) с выдержкой под нагрузкой 10 С. На каждом образце выполнено 60 измерений.

Результаты исследования и обсуждение

Выявленная микроструктура образцов сплава Ti-22Nb-6Ta представлена на рис. 1. В исходном деформированном состоянии (рисунок 1, *a*) наблюдается большое количество полос скольжения, зёренная структура химическим травлением не выявляется. Плотность полос скольжения наравномерно распределена по поверхности шлифа, что свидетельствует о неравномерной деформации образца.

После отжига при 600 °C, наблюдается однофазная структура, соответствующая стадии завершения первичной рекристаллизации. Структура характеризуется достаточно мелким равноосным зерном с неравновесными извилистыми границами (рисунок 1, δ). Методом количественной металлографии установлено, что после отжига 600 °C средний размер зёрен равен (18 ± 1) мкм. На рис. 2, *а* приведена гистограмма распределения зерен по размеру, из которой видно, что зерна распределены по логнормальному закону.

Рис. 1. Микроструктура образца Ti-22Nb-6Ta после деформации со степенью е = 0,3 (прокатка) и: *a* – без отжига; *б* – отжига 600 °C; *в* – отжига 750 °C

Рис. 2. Гистограмма распределения зерен по размерам деформированного сплава Ti-22Nb-6Ta после отжига: *a* - 600 °C; *б* - 750 °C

Повышение температуры отжига до 750 °C ведёт к существенному укрупнению зерна - средний условный диаметр составляет (205 ± 18) мкм. При этом границы зерен спрямляются, практически все стыки границ зёрен становятся 120-градусными (рис. 1, *в*). Рост зерна и изменение геометрии границ позволяет заключить, что при данной температуре развиваются процессы собирательной рекристаллизации. Распределение зерен по размеру описывается логнормальным законом (рис. 2, *б*).

В табл. 2 показаны результаты измерения микротвердости на представленных образцах в деформированном состоянии и после ПДО.

Таблица 2

Состояние, °С	Микротвердость, HV	
без отжига	121 ± 3	
600	136 ± 2	
750	203 ± 3	

Результаты измерения микротвердости деформированного и отожженного сплава Ti-22Nb-6Ta

Как видно из таблицы 2, ПДО повышает микротвердость материала. Самое высокое значение микротвердости демонстрирует образец, отожженный при температуре 750 °C в течение 0,5 ч.

Проведенная оценка теоретического значения температуры рекристаллизации по соотношению Бочвара показала, что T_p исследуемого сплава должна соответствовать приблизительно 650 °C. Однако в данном исследовании показано, что уже при температуре отжига 600 °C завершается процесс первичной рекристаллизации, а после отжига при 750 °C – и процесс собирательной рекристаллизации. По-видимому, это является следствием влияния степени предварительной деформации. Как хорошо известно, с повышением степени деформации температура рекристаллизации снижается.

Наблюдаемое повышение микротвердости после высокотемпературного отжига не согласуется с представлением о развитии рекристаллизации. Можно предположить, что отжиг способствует выделению ω -фазы. Действительно, в работе [1] приведены данные об обнаружении ω -фазы после отжига. Когерентно связанная с матрицей ω фаза не выявляется металлографически и, выделяется, по-видимому, в объеме зерен, а не на границах, не препятствуя росту зерна на стадии собирательной рекристаллизации.

выводы

- 1. Оптимизирован состав травителя для выявления зёренной структуры сплава Ti-22Nb-6Ta (1HF:4HNO₃:5H₂O₂) и получено качественное изображение микроструктуры.
- 2. На основании микроструктурных исследований установлено, что при температурах отжига деформированного (e = 0,3) образца Ti-22Nb-6Ta 600 и 750 °C наблюдается первичная и собирательная рекристаллизация, соответственно.
- 3. Определено, что с увеличением температуры отжига деформированного материала происходит рост микротвёрдости сплава, что, наиболее вероятно, связано с выделением ω-фазы.

Работа выполнена при финансовой поддержке РФФИ (проект № 16-43-710688 p_a).

ЛИТЕРАТУРА

1. Дубинский С. М. Формирование наноструктур методами термомеханической обработки и повышение функциональных свойств сплавов Ti–Nb–Zr, Ti–Nb–Ta с памятью формы: автореф. дис. ... канд. техн. наук. НИТУ «МИСиС». Москва, 2013.