МЕТОДИКА КОЛИЧЕСТВЕННОГО ЭЛЕКТРОННО-ЗОНДОВОГО РЕНТГЕНОСПЕКТРАЛЬНОГО МИКРОАНАЛИЗА РЕДКОМЕТАЛЬНО-РЕДКОЗЕМЕЛЬНЫХ МИНЕРАЛОВ

Л.Ф.Суворова, А.А.Конев*, А.А.Конева, Н.С.Карманов**, С.В.Канакин** Институт геохимии им. А.П. Виноградова СО РАН 664033, Иркутск, ул. Фаворского, 1 А Lsuvor@igc.irk.ru *Институт земной коры СО РАН 664033, Иркутск, ул. Лермонтова, 128 **Геологический институт СО РАН, Улан-Удэ, ул. Сахъяновой 6 А

Поступила в редакцию 28 июня 2005 г.

Предложена методика количественного электронно-зондового рентгеноспектрального микроанализа разрушающихся под действием электронного пучка редкометально-редкоземельных минералов. Выбраны условия возбуждения и регистрации аналитических линий, позволяющие минимизировать влияние температурного воздействия электронного пучка на аналитический сигнал. Искажение аналитического сигнала из-за эффекта взаимного наложения аналитический ких линий определяемых компонентов, характерное для анализируемых минералов, корректировалось с помощью коэффициентов наложения, предварительно установленных на образцах, не содержащих определяемый компонент. Оценка метрологических характеристик методики показала, что методика позволяет получать на рентгеноспектральных микроанализаторах информацию о химическом составе редкометально-редкоземельных минералов с требуемой для минералогических и геохимических исследований точностью.

Суворова Людмила Филипповна - кандидат химических наук, старший научный сотрудник Института геохимии им. А. П. Виноградова СО РАН.

Область научных интересов: электроннозондовый рентгеноспектральный микроанализ геологических объектов, исследование редких и новых минералов.

Автор 120 научных публикаций, в том числе 2 монографий.

Конев Алексей Андреянович – доктор геолого-минералогических наук, ведущий научный сотрудник Института земной коры СО РАН.

Область научных интересов: петрология и минералогия щелочных пород, новые минералы.

Автор 210 научных публикаций, в том числе 9 монографий.

Конева Анна Алексеевна - кандидат геолого-минералогических наук, старший научный сотрудник Института геохимии им. А. П. Виноградова СО РАН.

На Бираинском редкометально-редкоземельном карбонатитовом рудопроявлении (север Иркутской области) выявлены жильные породы оригинального минерального состава. По главным минералам их можно назвать кордилитовыми, бенстонитовыми, норсетитовыми, торнебомитовыми, баритовыми и железисто-дсломиОбласть научных интересов: геохимия и минералогия метаморфических пород. Автор 41 научных публикаций, в том числе 1 монографии.

Карманов Николай Семенович – кандидат геолого-минералогических наук, заведующий лабораторией Геологического института СО РАН.

Область научных интересов: электроннозондовый рентгеноспектральный микроанализ, автоматизация приборов и разработка программного обеспечения.

Автор более 60 научных публикаций.

Канакин Сергей Васильевич – старший научный сотрудник Геологического института СО РАН.

Область научных интересов: электроннозондовый рентгеноспектральный микроанализ объектов сложного состава, автоматизация приборов и разработка программного обеспечения.

Автор 28 научных публикаций.

товыми. Они содержат до 45 мас. % суммы оксидов редких земель, бария и стронция, а вместе с пятиокисью фосфора и ниобия заключают до 50 мас. % полезных компонентов. Совершенно ясно, что они представляют собой один из новых типов комплексного сырья на нетрадиционные руды. Большое разнообразие редкометально-редкоземельных минералов мелкозернистых пород Бираинского рудопроявления характеризуется микронными размерами их выделений. Часть из них, редкоземельные силикаты и карбонаты, могут быть породообразующими минералами и достигают размеров до 1 мм, а минералы, содержащие ниобий, чаще всего - акцессорные, и их обычные размеры не более 100 мкм. Основным инструментом исследования химического состава таких минералов является электронно-зондовый рентгеноспектральный микроанализ (РСМА).

Цель данной работы – обеспечить аналитической информацией требуемого качества минералогические исследования карбонатитового рудопроявления. Для ее достижения необходимо разработать методику количественного РСМА редкометально-редкоземельных карбонатов, силикатов, оксидов и фосфатов на электронно-зондовом микроанализаторе с волновой дисперсией Superprobe-733 фирмы Jeol с программным обеспечением MARSHELL [1]. Метрологические характеристики методики должны соответствовать требованиям HCAM [2].

Основной сложностью в изучении состава таких минералов является их многокомпонентность: в состав минералов могут входить до 25 элементов, таких как Nb, Ba, Sr, Ca, Ti, Fe, Mn, Si, Al, Mg, P, ClиF, а также U, Th, Yи 14 редкоземельных элементов с атомными номерами Z = 57-71. Многокомпонентность состава обуславливает сложность рентгеновского спектра в результате взаимных наложений характеристических спектральных линий. В состав большинства минералов, содержащих редкометалльные и редкоземельные элементы, входят летучие компоненты (СО, или Н₂О). Такие минералы разрушаются под действием электронного пучка. Методические сложности и разнообразие редкометально-редкоземельных минералов приводят к тому, что хотя этой проблемой занимались многие авторы [3, 4], однако в конкретной аналитической обстановке (состав и свойства исследуемых минералов, используемая аппаратура, матобеспечение и наличие образцов сравнения) разрабатываются специальные методики для отдельных групп минералов.

Подготовка образцов к анализу. Требуемая гочность результатов РСМА может быть достигнута только при условии, что исследуемый образец имеет плоскую, тщательно отполированную поверхность. Кусочки породы или минералы заливали в эпоксидную смолу, затем образец шлифовали и тщательно полировали по методике, описанной в работе [5]. Поскольку полученные таким образом образцы являются диэлектриками, для стока электронов на их поверхность в вакууме напыляли проводящий слой углерода.

Выбороптимальных условий анализа. Присутствие в карбонатах значительного количества связанного углекислого газа (от 20 до 44 мас. %) приводит к интенсивному испарению вещества из точки, бомбардируемой электронами, что может привести к значительным погрешностям в результатах анализа. Этот факт является основным ограничением применения РСМА для исследования карбонатных минералов. Скорость разрушения вещества зависит от тока поглощенных электронов и плотности потока электронов, регулируемой диаметром зонда. Для выбора оптимальных условий возбуждения и регистрации аналитических линий изучены зависимости величины аналитического сигнала от времени воздействия электронного пучка на редкоземельные карбонаты различного состава при токах поглощенных электронов 15 и 20 нА.

На рисунке приведены такие зависимости для редкоземельного карбоната - анкилита-(Се). Из графиков следует, что использование точечного зонда приводит к резкому изменению интенсивностей аналитических линий анализируемых элементов, особенно кальция (на 30% отн.), уже в первые секунды воздействия электронов на карбонат. При расфокусированном до 10 мкм электронном пучке разрушение карбонатов минимально и не превышает 0,25% отн. Подобные эксперименты, проведенные на двух редкометально-редкоземельных минералах, в состав которых обычно входит несколько процентов воды, торнебомите-(Се) и эшините-(Се), показали, что эти минералы более стойки к температурному воздействию электронного пучка, чем карбонаты. Интенсивность аналитических линий практически не зависит от времени счета импульсов при электронном пучке диаметром 1-2 мкм. Это важно для анализа акцессорных минералов, например ниобиевых, поскольку их размеры обычно не превышают нескольких микрометров.

Эксперименты показали, что регистрацию аналитических линий целесообразно проводить при ускоряющем напряжении 20 кВ, токе поглощенных электронов 20 нА, времени счета импульсов 10-20 с и диаметре электронного пучка для карбонатов не менее 10 мкм. Силикаты, фосфаты и оксиды можно анализировать при диаметре зонда 1-2 мкм, однако, если размер зерна позволяет, предпочтительно пользоваться расфокусированным зондом, т.к. многие редкометальноредкоземельные оксиды содержат значительное количество связанной воды.

Рис. Зависимость интенсивности характеристических линий определяемых элементов от времени воздействия на редкоземельный карбонат электронного пучка диаметром 1 и 10 мкм (ускоряющее напряжение 20 кВ, ток поглощенных электронов 20 нА)

Изучение спектров характеристического рентгеновского излучения исследуемых минералов показало, что анализ минералов, содержащих одновременно Ті, Ва и редкоземельные элементы, сопряжен с трудностями из-за искажения аналитических сигналов в результате каскада взаимных наложений характеристических линий. Например, ТіКа линии накладываются на ВаLа, ВаLβ - линии накладываются на СеLа, а LaLβ- линии накладываются на РгLа. Искажение аналитических сигналов учитывали с помощью коэффициентов наложения, установленных на образцах, не содержащих определяемого элемента: рутиле барите и фторидах редкоземельных элементов. В табл. 1 представлены коэффициенты наложения спектральных линий в расчете на 100 % мешающего компонента. Поправку на наложение линий вводили в нулевое приближение концентраций и уточняли в процессе расчета матричных эффектов.

Таблица 1

Налагающаяся	Кристалл-	Аналитические линии						
линия	анализатор	ΤίΚα	BaLα	CeLα	ΡrLα			
ΤίΚα	LiF	·····	0,4					
	PET		3,7					
BaLβ	LiF	4,5		3,10				
	PET	7,0		35,36				
LaLβ	LiF				12,83			
	PET				58,61			

Коэффициенты наложения спектральных линий, рассчитанные на 100 % содержания налагающегося компонента

Фоновую составляющую аналитического сигнала рассчитывали по формуле предложенной в работе [6] и реализованной авторами в матобеспечении MARSHELL.

$$N_{\rm I} = N_{\rm st} f_{\rm I} A_{\rm st} R_{\rm I} / (f_{\rm st} A_{\rm I} R_{\rm st}),$$

здесь f - функция, моделирующая зависимость тормозного излучения от атомного номера и длины волны регистрируемого характеристического излучения анализируемого элемента; A – коэффициент поглощения по Филиберу; R – фактор обратного рассеяния по Миклебасту; индекс і относится к анализируемому образцу, а st – к фоновому образцу, не содержащему определяемый элемент. В качестве фонового образца использовали металлический Ge, т. к. его атомный номер близок к среднему атомному номеру анализируемых минералов, а спектр его рентгеновских линий не дает наложений на аналитические линии определяемых элементов.

Из табл. 1 следует, что для регистрации аналитических сигналов перечисленных элементов предпочтительнее использовать кристалл-анализатор LiF, т. к. его разрешающая способность на порядок выше, чем у кристалла-анализатора РЕТ. Правильность использованного способа коррекции аналитического сигнала на эффект взаимных наложений характеристических линий была проверена на редкоземельных минералах путем сравнения результатов анализа по Lα-линиям и свободным от наложения Lβ-линиям. Получены сопоставимые результаты для всех элементов, кроме празидиума, для которого коэффициент наложения значителен даже при использовании кристалла-анализатора LiF. Для этого элемента удобнее в качестве аналитической линии использовать свободную от наложения PrLβ-линию.

Для учета матричных эффектов использовали РАР метод [7] с массовыми коэффициентами поглощения по Маренкову [8]. Оценки, проведенные ранее для сложных карбонатов [9], показали, что он позволяет получать правильные результаты в широком диапазоне атомных номеров определяемых элементов. Для градуировки методики использовали природные и искусственные минералы (TiO_2 , $SrSO_4$, $BaSO_4$, LiCe(WO_4)₂, $LiPr(MoO4)_2$, $NaLa(MoO4)_2$, LiCe(WO4), RbNd(WO4)₂, металлический Nb), аттестованных как стандартные образцы предприятий в Объединенном институте геологии, геофизики и минералогии СО РАН, г. Новосибирск.

Оценку метрологических характеристик методики

выполняли на редкометально-редкоземельных минералах различного состава, согласно требованиям, установленным НСАМ для анализа геологических образцов. Воспроизводимость определений рассчитывали по интервалам содержаний элементов, проводя не менее 10 определений на каждый интервал. Из результатов, приведенных в табл. 2, видно, что относительные стандартные отклонения результатов определений S., характеризующие воспроизводимость методики, для всех определяемых компонентов не превышает допустимых значений s "...... Значения пределов обнаружения С_{тіп}, установленные по критерию Кайзера с 95 % доверительной вероятностью, составляют 0,1 мас. % и менее для всех определяемых элементов, кроме редкоземельных. Для этих элементов из-за наложения спектральных линий предел обнаружения составляет лишь 0,2-0,4 мас. %.

Таблица 2

Метрологические характеристики методики анализа														
Интервал	Относительные стандартные отклонения, %													
содержаний								S,			_			
элементов, мас. %	$\sigma_{_{\sf don}}$	SiO ₂	TiO ₂	Al_2O_3	FeO	MgO	CaO	SrO	BaO	BaO	La ₂ O ₃	Pr_2O_3	Nd_2O_3	Nb_2O_3
50-69,99	0,7								0,7	0,7				0,7
50-59,99	0,8							0,8						0,8
40-49,99	1,0						1,0	1,0						0,9
30-39,99	1,3	0,8					1,3	1,3						1,2
20-29,99	1,9	0,9			1,5			1,7			1,9			
10-19,99	3,2	1,2			1,7		1,7				2,4			2,1
5 - 9,99	5,0		3,4	2,9	3,5		2,7				2,8		3,0	
2-4,99	6,8		4,1		4,0	3,2	4,5	4,2				4,5	4,2	4,6
1-1,99	9,0			6,4	8,1	5,9		7,6	5,4	5,4		8,7		
0,5-0,99	12,0		7,0			9,5	7,0	8,9	8,0	8,0		11,4		
0,2-0,49	17,0		16,0		20,0	20,0	9,0	10,5						
0,1-0,199	21,0		22,0		24,0			18,0	25,0	25,0				
C _{min} , %		0,08	0,09	0,06	0,08	0,08	0,08	0,12	0,14	0,14	0,32	0,40	0,25	

Примечание: *S*, - относительные стандартные отклонения, характеризующие воспроизводимость методики, σ_{дол} - допустимые стандартные отклонения для II категории количественных определений

Оценка правильности результатов анализа редкометально-редкоземельных минералов затруднена отсутствием образцов сравнения адекватного состава. Микронные размеры выделений минералов позволяют определить их состав только локальными методами. К тому же, состав отдельных зерен одного и того же минерала может отличаться из-за изоморфных замещений присутствующих компонентов. Поэтому оценку правильности проводили по среднему составу 10-12 зерен. В табл. З приведены средние значения результатов анализа некоторых минералов, полученные по разработанной методике на микроанализаторе Superprobe-733 (JXA-733), и на растровом электронном микроскопе JSM 5300 с помощью спектрометра с энергетической дисперсией LINK ISIS (ИГЕМ, г. Москва). Химический состав минералов определен на разном наборе зерен минералов одной породы. Это обстоятельство позволяет сделать только полуколичественные оценки правильности методики анализа. Тем не менее, сравнение средних значений концентраций основных компонентов с помощью *t*-критерия позволяет сделать вывод, что с 95 % вероятностью систематические расхождения между результатами анализа отсутствуют.

Таблица 3

Сопоставление результатов анализа редкоземельных силикатов по предложенной методике (JXA-733) с данными энргодисперсионного спектрометра (LINK ISIS)

Оксид	Концентрация, % мас.								
	вастманл	андит-Се	ферри	алланит	торнебомит				
	JXA-733	LINK ISIS	JXA-733	LINKISIS	JXA-733	LINK ISIS			
SiO ₂	27,67	27,61	30,20	29,77	23,52	23,21			
Al ₂ O ₃	8,96	9,14	9,97	10,38	7,95	8,49			
La ₂ O ₃	15,48	15,54	9,01	9,42	21,25	21,69			
Ce ₂ O ₃	21,87	21,88	13,77	13,55	32,57	32,57			
Pr ₂ O ₃	1,36	1,06	1,13	1,00	2,31	2,08			
Nd_2O_3	4,44	4,31	2,31	2,41	7,54	7,90			
MgO	1,38	1,42	<0,1	<0,1	0,2	<0,1			
CaO	5,54	5,39	9,05	8,52	<0,08	<0,1			
FeO	10,68	10,84	19,45	19,70	1,50	1,71			
SrO	0,57	0,76	1,53	1,40	0,30	<0,2			
Сумма	97,88	97,95	96,42	96,15	97,14	97,65			

Примечание: сумма концентраций менее 100 % мас., т.к. в минералах присутствует связанная вода, не определяемая методом электронно-зондового рентгеноспектрального микроанализа.

Оценка метрологических характеристик разработанной методики анализа, выполненная на минералах различного состава, показала, что по воспроизводимости и правильности результатов анализа она удовлетворяет требованиям НСАМ, г.е. позволяет получать информацию о химическом составе редкометально-редкоземельных минералов требуемого для минералогических и геохимических исследований качества.

Практическое применение методики. С помощью разработанной методики изучен минеральный состав некоторых жильных пород Бираинского рудопроявления. Оказалось, что высокое содержание ниобия в породе определяется широким развитием разнообразных ниобиевых минералов. В процессе исследований были диагностированы полтора десятка различных ниобиевых минералов. Кроме того, исследуемые породы отличаются необычным разнообразием редкоземельных силикатов и карбонатов. Определен также химический состав минералов ряда арагонит – стронцианит, баритов, апатитов и амфиболов. Химические формулы минералов, входящих в состав карбонатитов, диагностированные с помощью разработанной методики, приведены в табл. 4. Часть из этих минералов являются новыми и предположительно новыми. Бираит-(Се) утвержден комиссией по новым минералам Международного Минералогического Общества, как новый, два карбоната (Sr-бенстонит и кордилит-(La)) отправлены в комиссию для утверждения, остальные минералы находятся на различных стадиях исследования.

Авторы благодарят РФФИ за поддержку исследований – грант №03-05-64158.

ЛИТЕРАТУРА

1. Методические основы исследования химического состава горных пород, руд и минералов / Под ред. Г.В. Остроумова. М.: Недра, 1979. 400 с.

2. Лапутина И.П. Микрозонд в минералоги. М.: Наука, 1991. 139 с.

 Павлова Л.А. Рентгеноспектральный микроанализ и его применение в минералогии / Л.А.Павлова, Л.Ф.Парадина. Якутск: ЯНЦ СО АН СССР, 1990. 186 с.
 Канакин С.В. Программное обеспечение электронно-зондовых микроанализаторов МАР-3 и МАР-4 для IBM PC / С.В.Канакин, Н.С.Карманов // Тез. докл. III Всерос. и VI Сибирской конф. по рентгеноспектральному анализу. Иркутск, 1998. С. 67.

5. Маликов Ю.И. Подготовка препаратов для анализа на микрозонде. Методические рекомендации. Новосибирск: ИГиГ СО АН СССР, 1983. 36 с.

 Карманов Н.С. Моделирование тормозной составляющей фона в РСМА с волновой дисперсией / Н.С.Карманов, С.В.Канакин // Тез. докл. IV Всерос. конференции по рентгеноспектральному анализу.

Таблица 4

Обнаруженные минералы жильных пород Бираи					
Известные минералы					

Карбонаты Бельковит Ва ₃ (Nb,Ti) ₆ (Si ₂ O ₂) ₂ O ₁₂ Кордилит-(Ce) (Na,Ca)BaCe ₂ (CO ₃) ₂ F Вастманландит-(Ce) CaCe ₃ (Mg,Fe) ₄ Al ₃ [SiO ₄] ₃ Бенстонит (Ba,Sr) ₆ Ca ₆ Mg(CO ₃) ₁₃ Вастманландит-(Ce) CaCe ₃ (Mg,Fe) ₄ Al ₃ [SiO ₄] ₃ Норсетит BaMg(CO ₃) ₂ Оксиды [Si ₂ O ₇](OF)(OH) ₂ Бастнезит-(Ce) (Ce,La)(CO ₃) ₂ Ферсмит (Ca,Ce)(Ti,Nb) ₂ O ₆ Анкилит-(Ce) Sr(Ce,La)(CO ₃) ₂ (OH)-H ₂ O Колумбит FeNb ₂ O ₆ Анкилит-(La) Sr(La,Ce)(CO ₃) ₂ (OH)-H ₂ O Marноколумбит (Mg,Fe)Nb ₂ O ₆ Кухаренкоит-(Ce) Ba ₂ Ce(CO ₃) ₃ F эшинит-(Ce) (Ce,Ca)(Ti,Nb) ₂ (O,OH) ₆ Дациншанит-(La) Sr ₃ (La,Ce)(PO ₄) ₄ (CO ₃) _{3×} (OH,F) _x Ниобоэшинит-(Ce) (Ce,Ca)(Nb,Ti) ₂ (O,OH) ₆ Дациншанит-(La) Sr ₃ (La,Ce)(PO ₄) ₄ (CO ₃) _{2×} (OH,F) _x Ниобоэшинит-(Nd) (Nd,Ce)(Nb,Ti) ₂ (O,OH) ₆ Дациншанит-(Ce) (Ga,Sr)(Ca,Na,Ce)(CO ₃) ₂ H ₂ O Пирохлор (Ca,Na) ₂ Nb ₂ O ₆ (OH,F) Силикаты (Ba,Sr)(Ca,Na,Ce)(CO ₃) ₂ H ₂ O Пирохлор (Ca,Na) ₂ Nb ₂ O ₆ (OH,F) Силикаты (Ce,Ca) ₂ (A ,Fe ^{3*}) ₃ (SiO ₄)				
Кордилит-(Ce) (Na,Ca)BaCe_2(CO_3)2F Вастманландит-(Ce) CaCe_3(Mg,Fe)_4Al_3[SiO_4]3 [Si_2O_7](OF)(OH)2 Бенстонит (Ba,Sr)_6Ca_6Mg(CO_3)_3 Оксиды [Si_2O_7](OF)(OH)2 Норсетит BaMg(CO_3)2 Ферсмит (Ca,Ce)(Ti,Nb)2O_6 Анкилит-(Ce) (Ce,La)(CO_3)2(OH) H2O Колумбит FeNb2O_6 Анкилит-(La) Sr(La,Ce)(CO_3)2(OH) H2O Магноколумбит (Mg,Fe)Nb2O_6 Кухаренкоит-(Ce) Ba_2Ce(CO_3)3F эшинит-(Ce) (Ce,Ca)(Ti,Nb)2(O,OH)_6 Дациншанит-(Ce) Sr_3(Ce,La)(PO_4)4(CO_3)3_x(OH,F)x Ниобозшинит-(Ce) (Ce,Ca)(Nb,Ti)2(O,OH)_6 Дациншанит-(La) Sr_3(Ce,La)(PO_4)4(CO_3)3_x(OH,F)x Ниобозшинит-(Nd) (Nd,Ce)(Nb,Ti)2(O,OH)_6 Дациншанит-(La) Sr_3(La,Ce)(PO_4)4(CO_3)2_H2O Пирохлор (Ca,Na)2Nb2O_6(OH,F) Маккельвиит (Ba,Sr)(Ca,Na,Ce)(CO_3)2H2O Пирохлор (Ca,Na)2Nb2O_6(OH,F) Силикаты (Ba,Sr)(Ca,Na,Ce)(CO_3)2H2O Пирохлор (Ca,Na)2Nb2O_6(OH,F) Силикаты (Ba,Sr)(Ca,Na,Ce)(CO_3)2H2O Пирохлор (Ca,Na)2Nb2O_6(OH,F) Ферриалланит-(Ce) (Ce,Ca)2(AI,Fe ³⁺)3(SiO_4)3OH Фосфаты	Карбонаты		Бельковит	Ba ₃ (Nb,Ti) ₆ (Si ₂ O ₇) ₂ O ₁₂
Бенстонит (Ba,Sr) ₆ Ca ₆ Mg(CO ₃) ₁₃ [Si ₂ O ₇](OF)(OH) ₂ Норсетит BaMg(CO ₃) ₂ Оксиды Бастнезит-(Ce) (Ce,La)(CO ₃) ₂ Ферсмит (Ca,Ce)(Ti,Nb) ₂ O ₆ Анкилит-(Ce) Sr(Ce,La)(CO ₃) ₂ (OH)·H ₂ O Колумбит FeNb ₂ O ₆ Анкилит-(La) Sr(La,Ce)(CO ₃) ₂ (OH)·H ₂ O Магноколумбит (Mg,Fe)Nb ₂ O ₆ Кухаренкоит-(Ce) Ba ₂ Ce(CO ₃) ₃ F эшинит-(Ce) (Ce,Ca)(Ti,Nb) ₂ (O,OH) ₆ Дациншанит-(Ce) Sr ₃ (Ce,La)(PO ₄) ₄ (CO ₃) _{3×} (OH,F) _x Ниобоэшинит-(Ce) (Ce,Ca)(Nb,Ti) ₂ (O,OH) ₆ Дациншанит-(La) Sr ₃ (La,Ce)(PO ₄) ₄ (CO ₃) _{3×} (OH,F) _x Ниобоэшинит-(Nd) (Nd,Ce)(Nb,Ti) ₂ (O,OH) ₆ Маккельвиит (Ba,Sr)(Ca,Na,Ce)(CO ₃) ₂ H ₂ O Пирохлор (Ca,Na) ₂ Nb ₂ O ₆ (OH,F) <i>Силикаты</i> (Ba,Sr)(Ca,Na,Ce)(CO ₃) ₂ H ₂ O Пирохлор (Ca,Ce)(Nb,Ti) ₂ O,OH) ₇ Торнебомит-(Ce) (Ce,Al) ₃ Si ₂ O ₈ (F,OH) Виджецият (Za,Ce)(Nb,Ti) ₂ O,G Ферриалланит-(Ce) (Ce,Ca) ₂ (Al,Fe ³⁺) ₃ (SiO ₄) ₃ OH Фосфаты Даси,Min)Fe ₂ O ₄ Апланит-(Ce) (Ce,Ca) ₂ (Al,Fe ³⁺) ₃ (SiO ₄) ₃ OH Фосфаты Даси,Min)Fe	Кордилит-(Се)	(Na,Ca)BaCe ₂ (CO ₃) ₂ F	Вастманландит-(Се)	CaCe ₃ (Mg,Fe) ₄ Al ₃ [SiO ₄] ₃
НорсетитВаМg(CO_3)2ОксидыБастнезит-(Ce) $(Ce,La)(CO_3)_2$ Ферсмит $(Ca,Ce)(Ti,Nb)_2O_6$ Анкилит-(Ce)Sr(Ce,La)(CO_3)_2(OH)·H_2OКолумбитFeNb_2O_6Анкилит-(La)Sr(La,Ce)(CO_3)_2(OH)·H_2OМагноколумбит(Mg,Fe)Nb_2O_6Кухаренкоит-(Ce)Ba_2Ce(CO_3)_Fэшинит-(Ce) $(Ce,Ca)(Ti,Nb)_2(O,OH)_6$ Дациншанит-(Ce)Sr_3(Ce,La)(PO_4)_4(CO_3)_{3x}(OH,F)_xНиобоэшинит-(Ce) $(Ce,Ca)(Nb,Ti)_2(O,OH)_6$ Дациншанит-(La)Sr_3(La,Ce)(PO_4)_4(CO_3)_{3x}(OH,F)_xНиобоэшинит-(Nd) $(Nd,Ce)(Nb,Ti)_2(O,OH)_6$ Дациншанит-(La)Sr_3(La,Ce)(PO_4)_4(CO_3)_{3x}(OH,F)_xНиобоэшинит-(Nd) $(Nd,Ce)(Nb,Ti)_2(O,OH)_6$ Дациншанит-(La)Sr_3(La,Ce)(PO_4)_4(CO_3)_{3x}(OH,F)_xНиобоэшинит-(Nd) $(Nd,Ce)(Nb,Ti)_2(O,OH)_6$ Маккельвиит(Ba,Sr)(Ca,Na,Ce)(CO_3)_2H_2OПирохлор $(Ca,Na)_2Nb_2O_6(OH,F)$ Силикаты(Ba,Sr)(Ca,Na,Ce)(CO_3)_2H_2OПирохлор $(Ba,Sr)(Nb,Ti)_2(O,OH)_7$ Торнебомит-(Ce)(Ce,Al)_3Si_2O_8(F,OH)Виджеццит $(Ca,Ce)(Nb,Ti)_2O_6$ Ферриалланит-(Ce)(Ce,Ca)_2(AI,Fe^{3*})_3(SiO_4)_3OHФранклинит $(Zn,Mn)Fe_2O_4$ Алланит-(Ce)(Ce,Ca)_2(AI,Fe^{3*})_3(SiO_{12})_1Монацит-(Ce) $(Ce,La)PO_4$ БаотитВа_4(Nb,Ti,Fe)_8O_{16}[Si_4O_{12}]CIСульфатыЧевкинит(Ca,Ce)_4(Fe^{2*}Mg)_2(Ti,Fe^{3*})_3Si_4O_22БаритBaSO_4Церит(Ce,Ca)_9(Mg,Fe)Si_7(O,F)_{28}БаритВаSO_4	Бенстонит	(Ba,Sr) ₆ Ca ₆ Mg(CO ₃) ₁₃		[Si ₂ O ₇](OF)(OH) ₂
Бастнезит-(Ce)(Ce,La)(CO3)2Ферсмит(Ca,Ce)(Ti,Nb)2O6Анкилит-(Ce)Sr(Ce,La)(CO3)2(OH) H2OКолумбитFeNb2O6Анкилит-(La)Sr(La,Ce)(CO3)2(OH) H2OМагноколумбит(Mg,Fe)Nb2O6Кухаренкоит-(Ce)Ba2Ce(CO3)3FЭшинит-(Ce)(Ce,Ca)(Ti,Nb)2(O,OH)6Дациншанит-(Ce)Sr3(Ce,La)(PO4)4(CO3)3x(OH,F)xНиобоэшинит-(Ce)(Ce,Ca)(Nb,Ti)2(O,OH)6Дациншанит-(La)Sr3(La,Ce)(PO4)4(CO3)3x(OH,F)xНиобоэшинит-(Nd)(Nd,Ce)(Nb,Ti)2(O,OH)6Дациншанит-(La)Sr3(La,Ce)(PO4)4(CO3)3x(OH,F)xНиобоэшинит-(Nd)(Nd,Ce)(Nb,Ti)2(O,OH)6Маккельвиит(Ba,Sr)(Ca,Na,Ce)(CO3)2H2OПирохлор(Ca,Na)2Nb2O6(OH,F)Силикаты(Ba,Sr)(Ca,Na,Ce)(CO3)2H2OПирохлор(Ba,Sr)(Nb,Ti)2(O,OH)7Торнебомит-(Ce)(Ce,Al)3Si2O8(F,OH)Виджеццит(Ca,Ce)(Nb,Ti)2O6Ферриалланит-(Ce)(Ce,Ca)2(Al,Fe3*)3(SiO4)3OHФосфатыНиобобаотитBa4(Nb,Ti,Fe)8O16[Si4O12]CIСульфатыНиобобаотитBa4(Ti,Nb,Fe)8O16[Si4O12]CIСульфатыЧевкинит(Ca,Ce)4(Fe2*M9)2(Ti,Fe3*)3Si4O22БаритBaSO4Церит(Ce,Ca)3(Mg,Fe)Si7(O,F)28БаритВаSO4	Норсетит	BaMg(CO ₃) ₂	Оксиды	
Анкилит-(Ce)Sr(Ce,La)(CO_3)_2(OH)·H_2OКолумбитFeNb2O6Анкилит-(La)Sr(La,Ce)(CO_3)_2(OH)·H_2OМагноколумбит(Mg,Fe)Nb_2O6Кухаренкоит-(Ce)Ba2Ce(CO_3)_3Fэшинит-(Ce)(Ce,Ca)(Ti,Nb)_2(O,OH)6Дациншанит-(Ce)Sr_3(Ce,La)(PO_4)_4(CO_3)_3,(OH,F)_xНиобоэшинит-(Ce)(Ce,Ca)(Nb,Ti)_2(O,OH)6Дациншанит-(La)Sr_3(La,Ce)(PO_4)_4(CO_3)_3,(OH,F)_xНиобоэшинит-(Nd)(Nd,Ce)(Nb,Ti)_2(O,OH)6Дациншанит-(La)Sr_3(La,Ce)(PO_4)_4(CO_3)_3,(OH,F)_xНиобоэшинит-(Nd)(Nd,Ce)(Nb,Ti)_2(O,OH)6Маккельвиит(Ba,Sr)(Ca,Na,Ce)(CO_3)_2H_2OПирохлор(Ca,Na)_2Nb_2O6(OH,F)Силикаты(Ba,Sr)(Ca,Na,Ce)(CO_3)_2H_2OПирохлор(Ba,Sr)(Nb,Ti)_2(O,OH)7Торнебомит-(Ce)(Ce,Al)_3Si_2O8(F,OH)Виджеццит(Ca,Ce)(Nb,Ti)_2O,OH)7Ферриалланит-(Ce)Ce_2Fe ³⁺ (SiO_4)_3OHФранклинит(Zn,Mn)Fe_2O4Апланит-(Ce)(Ce,Ca)_2(AI,Fe ³⁺)_3(SiO_4)_3OHФосфатыНиобобаотитBa4(Nb,Ti,Fe)8O16[Si4O12]CIМонацит-(Ce)(Ce,La)PO4БаотитBa4(Ti,Nb,Fe)8O16[Si4O12]CIСульфатыЧевкинит(Ca,Ce)4(Fe ²⁺ Mg)2(Ti,Fe ³⁺)_3Si4O22БаритBaSO4Церит(Ce,Ca)9(Mg,Fe)Si7(O,F)28КонКон	Бастнезит-(Се)	(Ce,La)(CO ₃) ₂	Ферсмит	(Ca,Ce)(Ti,Nb) ₂ O ₆
Анкилит-(La)Sr(La,Ce)(CO3)2(OH)·H2OМагноколумбит(Mg,Fe)Nb2O6Кухаренкоит-(Ce)Ba2Ce(CO3)3Fэшинит-(Ce)(Ce,Ca)(Ti,Nb)2(O,OH)6Дациншанит-(Ce)Sr3(Ce,La)(PO4)4(CO3)3x(OH,F)xНиобоэшинит-(Ce)(Ce,Ca)(Nb,Ti)2(O,OH)6Дациншанит-(La)Sr3(La,Ce)(PO4)4(CO3)3x(OH,F)xНиобоэшинит-(Nd)(Nd,Ce)(Nb,Ti)2(O,OH)6Маккельвиит(Ba,Sr)(Ca,Na,Ce)(CO3)2H2OПирохлор(Ca,Na)2Nb2O6(OH,F)Силикаты(Ba,Sr)(Ca,Na,Ce)(CO3)2H2OПирохлор(Ba,Sr)(Nb,Ti)2(O,OH)7Торнебомит-(Ce)(Ce,Al)3Si2O8(F,OH)Виджеццит(Ca,Ce)(Nb,Ti)2O,OH)7Ферриалланит-(Ce)Ce2Fe3*(SiO4)3OHФранклинит(Zn,Mn)Fe2O4Алланит-(Ce)(Ce,Ca)2(AI,Fe3*)3(SiO4)3OHФосфатыНиобобаотитBa4(Nb,Ti,Fe)8O16[Si4O12]CIМонацит-(Ce)(Ce,La)PO4БаотитBa4(Ti,Nb,Fe)8O16[Si4O12]CIСульфатыЧевкинит(Ca,Ce)4(Fe2*MG)2(Ti,Fe3*)3Si4O22БаритBaSO4Церит(Ce,Ca)9(Mg,Fe)Si7(O,F)26	Анкилит-(Се)	Sr(Ce,La)(CO ₃) ₂ (OH)·H ₂ O	Колумбит	FeNb ₂ O ₆
Кухаренкоит-(Ce) $Ba_2Ce(CO_3)_3F$ эшинит-(Ce) $(Ce,Ca)(Ti,Nb)_2(O,OH)_6$ Дациншанит-(Ce) $Sr_3(Ce,La)(PO_4)_4(CO_3)_{3,x}(OH,F)_x$ Ниобоэшинит-(Ce) $(Ce,Ca)(Nb,Ti)_2(O,OH)_6$ Дациншанит-(La) $Sr_3(La,Ce)(PO_4)_4(CO_3)_{3,x}(OH,F)_x$ Ниобоэшинит-(Nd) $(Nd,Ce)(Nb,Ti)_2(O,OH)_6$ Маккельвиит $(Ba,Sr)(Ca,Na,Ce)(CO_3)_2H_2O$ Пирохлор $(Ca,Na)_2Nb_2O_6(OH,F)$ СиликатыСиликатыБариопирохлор $(Ba,Sr)(Nb,Ti)_2(O,OH)_7$ Торнебомит-(Ce) $(Ce,Al)_3Si_2O_8(F,OH)$ Виджеццит $(Ca,Ce)(Nb,Ti)_2O_6$ Ферриалланит-(Ce) $Ce_2Fe^{3*}(SiO_4)_3OH$ Франклинит $(Zn,Mn)Fe_2O_4$ Алланит-(Ce) $(Ce,Ca)_2(Al,Fe^{3*})_3(SiO_4)_3OH$ ФосфатыНиобобаотит $Ba_4(Nb,Ti,Fe)_8O_{16}[Si_4O_{12}]Cl$ монацит-(Ce) $(Ce,La)PO_4$ Баотит $Ba_4(Ti,Nb,Fe)_8O_{16}[Si_4O_{12}]Cl$ СульфатыЧевкинит $(Ca,Ce)_4(Fe^{2*}Mg)_2(Ti,Fe^{3*})_3Si_4O_{22}$ Барит $BaSO_4$ Церит $(Ce,Ca)_9(Mg,Fe)Si_7(O,F)_{28}$ Барит $BaSO_4$	Анкилит-(La)	Sr(La,Ce)(CO ₃) ₂ (OH)·H ₂ O	Магноколумбит	(Mg,Fe)Nb ₂ O ₆
Дациншанит-(Ce) $Sr_3(Ce,La)(PO_4)_4(CO_3)_{3\times}(OH,F)_x$ Ниобоэшинит-(Ce) $(Ce,Ca)(Nb,Ti)_2(O,OH)_6$ Дациншанит-(La) $Sr_3(La,Ce)(PO_4)_4(CO_3)_{3\times}(OH,F)_x$ Ниобоэшинит-(Nd) $(Nd,Ce)(Nb,Ti)_2(O,OH)_6$ Маккельвиит $(Ba,Sr)(Ca,Na,Ce)(CO_3)_2H_2O$ Пирохлор $(Ca,Na)_2Nb_2O_6(OH,F)$ СиликатыБариопирохлор $(Ba,Sr)(Nb,Ti)_2(O,OH)_7$ Торнебомит-(Ce) $(Ce,Al)_3Si_2O_8(F,OH)$ Виджеццит $(Ca,Ce)(Nb,Ti)_2O_6$ Ферриалланит-(Ce) $Ce_2Fe^{3*}(SiO_4)_3OH$ Франклинит $(Zn,Mn)Fe_2O_4$ Алланит-(Ce) $(Ce,Ca)_2(Al,Fe^{3*})_3(SiO_4)_3OH$ ФосфатыНиобобаотит $Ba_4(Nb,Ti,Fe)_8O_{16}[Si_4O_{12}]Cl$ монацит-(Ce) $(Ce,La)PO_4$ Баотит $Ba_4(Ti,Nb,Fe)_8O_{16}[Si_4O_{12}]Cl$ $Cyльфаты$ Чевкинит $(Ca,Ce)_4(Fe^{2*}Mg)_2(Ti,Fe^{3*})_3Si_4O_{22}$ Барит $BaSO_4$ Церит $(Ce,Ca)_9(Mg,Fe)Si_7(O,F)_{28}$ $Castanananananananananananananananananana$	Кухаренкоит-(Се)	Ba ₂ Ce(CO ₃) ₃ F	эшинит-(Се)	(Ce,Ca)(Ti,Nb) ₂ (O,OH) ₆
Дациншанит-(La) $Sr_3(La,Ce)(PO_4)_4(CO_3)_{3,x}(OH,F)_x$ Ниобоэшинит-(Nd) $(Nd,Ce)(Nb,Ti)_2(O,OH)_6$ Маккельвиит $(Ba,Sr)(Ca,Na,Ce)(CO_3)_2H_2O$ Пирохлор $(Ca,Na)_2Nb_2O_6(OH,F)$ <i>Силикаты</i> Бариопирохлор $(Ba,Sr)(Nb,Ti)_2(O,OH)_7$ Торнебомит-(Ce) $(Ce,Al)_3Si_2O_8(F,OH)$ Виджеццит $(Ca,Ce)(Nb,Ti)_2O_6$ Ферриалланит-(Ce) $Ce_2Fe^{3*}(SiO_4)_3OH$ Франклинит $(Zn,Mn)Fe_2O_4$ Алланит-(Ce) $(Ce,Ca)_2(Al,Fe^{3*})_3(SiO_4)_3OH$ ФосфатыНиобобаотит $Ba_4(Nb,Ti,Fe)_8O_{16}[Si_4O_{12}]Cl$ монацит-(Ce) $(Ce,La)PO_4$ Баотит $Ba_4(Ti,Nb,Fe)_8O_{16}[Si_4O_{12}]Cl$ $Cyльфаты$ Чевкинит $(Ca,Ce)_4(Fe^{2*}Mg)_2(Ti,Fe^{3*})_3Si_4O_{22}$ Барит $BaSO_4$ Церит $(Ce,Ca)_9(Mg,Fe)Si_7(O,F)_{28}$ $Cynbacharan$	Дациншанит-(Се)	$Sr_{3}(Ce,La)(PO_{4})_{4}(CO_{3})_{3,x}(OH,F)_{x}$	Ниобоэшинит-(Се)	(Ce,Ca)(Nb,Ti) ₂ (O,OH) ₆
Маккельвиит (Ba,Sr)(Ca,Na,Ce)(CO ₃) ₂ H ₂ O Пирохлор (Ca,Na) ₂ Nb ₂ O ₆ (OH,F) Силикаты Бариопирохлор (Ba,Sr)(Nb,Ti) ₂ (O,OH) ₇ Торнебомит-(Ce) (Ce,Al) ₃ Si ₂ O ₈ (F,OH) Виджеццит (Ca,Ce)(Nb,Ti) ₂ O ₆ Ферриалланит-(Ce) Се ₂ Fe ³⁺ (SiO ₄) ₃ OH Франклинит (Zn,Mn)Fe ₂ O ₄ Алланит-(Ce) (Ce,Ca) ₂ (Al,Fe ³⁺) ₃ (SiO ₄) ₃ OH Фосфаты Ниобобаотит Ba ₄ (Nb,Ti,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]Cl монацит-(Ce) (Ce,La)PO ₄ Баотит Ba ₄ (Ti,Nb,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]Cl Сульфаты BaSO ₄ Чевкинит (Ca,Ce) ₄ (Fe ²⁺ Mg) ₂ (Ti,Fe ³⁺) ₃ Si ₄ O ₂₂ Барит BaSO ₄	Дациншанит-(La)	Sr ₃ (La,Ce)(PO ₄) ₄ (CO ₃) _{3-x} (OH,F) _x	Ниобоэшинит-(Nd)	(Nd,Ce)(Nb,Ti) ₂ (O,OH) ₆
Силикаты Бариопирохлор (Ba,Sr)(Nb,Ti) ₂ (O,OH) ₇ Торнебомит-(Ce) (Ce,Al) ₃ Si ₂ O ₈ (F,OH) Виджеццит (Ca,Ce)(Nb,Ti) ₂ O ₆ Ферриалланит-(Ce) Ce ₂ Fe ³⁺ (SiO ₄) ₃ OH Франклинит (Zn,Mn)Fe ₂ O ₄ Алланит-(Ce) (Ce,Ca) ₂ (Al,Fe ³⁺) ₃ (SiO ₄) ₃ OH Фосфаты Ниобобаотит Ba ₄ (Nb,Ti,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]Cl монацит-(Ce) (Ce,La)PO ₄ Баотит Ba ₄ (Ti,Nb,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]Cl Сульфаты Чевкинит (Ca,Ce) ₄ (Fe ²⁺ Mg) ₂ (Ti,Fe ³⁺) ₃ Si ₄ O ₂₂ Барит BaSO ₄ Церит (Ce,Ca) ₉ (Mg,Fe)Si ₇ (O,F) ₂₈ Сульфаты ВаSO ₄	Маккельвиит	(Ba,Sr)(Ca,Na,Ce)(CO ₃) ₂ H ₂ O	Пирохлор	(Ca,Na) ₂ Nb ₂ O ₆ (OH,F)
Торнебомит-(Ce) (Ce,Al)_3Si_2O_8(F,OH) Виджеццит (Ca,Ce)(Nb,Ti)_2O_6 Ферриалланит-(Ce) Ce_2Fe ³⁺ (SiO_4)_3OH Франклинит (Zn,Mn)Fe_2O_4 Алланит-(Ce) (Ce,Ca)_2(Al,Fe ³⁺)_3(SiO_4)_3OH Фосфаты Ниобобаотит Ba_4(Nb,Ti,Fe)_8O_{16}[Si_4O_{12}]Cl монацит-(Ce) (Ce,La)PO_4 Баотит Ba_4(Ti,Nb,Fe)_8O_{16}[Si_4O_{12}]Cl Сульфаты Чевкинит (Ca,Ce)_4(Fe ²⁺ Mg)_2(Ti,Fe ³⁺)_3Si_4O_{22} Барит BaSO_4 Церит (Ce,Ca)_9(Mg,Fe)Si_7(O,F)_{28} Сульфаты Сульфаты	Силикаты		Бариопирохлор	(Ba,Sr)(Nb,Ti) ₂ (O,OH) ₇
Ферриалланит-(Ce) Се ₂ Fe ³⁺ (SiO ₄) ₃ OH Франклинит (Zn,Mn)Fe ₂ O ₄ Алланит-(Ce) (Ce,Ca) ₂ (AI,Fe ³⁺) ₃ (SiO ₄) ₃ OH Фосфаты Ниобобаотит Ва ₄ (Nb,Ti,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]CI монацит-(Ce) (Ce,La)PO ₄ Баотит Ва ₄ (Ti,Nb,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]CI Сульфаты Чевкинит (Ca,Ce) ₄ (Fe ²⁺ Mg) ₂ (Ti,Fe ³⁺) ₃ Si ₄ O ₂₂ Барит ВаSO ₄ Церит (Ce,Ca) ₉ (Mg,Fe)Si ₇ (O,F) ₂₈ Сульфаты Сульфаты	Торнебомит-(Се)	(Ce,Al) ₃ Si ₂ O ₈ (F,OH)	Виджеццит	(Ca,Ce)(Nb,Ti) ₂ O ₆
Алланит-(Ce) (Ce,Ca) ₂ (AI,Fe ³⁺) ₃ (SiO ₄) ₃ OH Фосфаты Ниобобаотит Ва ₄ (Nb,Ti,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]CI монацит-(Ce) (Ce,La)PO ₄ Баотит Ва ₄ (Ti,Nb,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]CI Сульфаты Чевкинит (Ca,Ce) ₄ (Fe ²⁺ Mg) ₂ (Ti,Fe ³⁺) ₃ Si ₄ O ₂₂ Барит ВаSO ₄ Церит (Ce,Ca) ₉ (Mg,Fe)Si ₇ (O,F) ₂₈ Сульфаты Сульфаты	Ферриалланит-(Се)	Ce ₂ Fe ³⁺ (SiO ₄) ₃ OH	Франклинит	(Zn,Mn)Fe ₂ O ₄
Ниобобаотит Ва ₄ (Nb,Ti,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]Cl монацит-(Ce) (Ce,La)PO ₄ Баотит Ва ₄ (Ti,Nb,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]Cl Сульфаты Чевкинит (Ca,Ce) ₄ (Fe ²⁺ Mg) ₂ (Ti,Fe ³⁺) ₃ Si ₄ O ₂₂ Барит ВаSO ₄ Церит (Ce,Ca) ₉ (Mg,Fe)Si ₇ (O,F) ₂₈ Сульфаты Сульфаты	Алланит-(Се)	(Ce,Ca) ₂ (Al,Fe ³⁺) ₃ (SiO₄) ₃ OH	Фосфаты	
Баотит Ва ₄ (Ti,Nb,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]Cl Сульфаты Чевкинит (Ca,Ce) ₄ (Fe ²⁺ Mg) ₂ (Ti,Fe ³⁺) ₃ Si ₄ O ₂₂ Барит ВаSO ₄ Церит (Ce,Ca) ₉ (Mg,Fe)Si ₇ (O,F) ₂₈ Сульфаты Сульфаты	Ниобобаотит	Ba ₄ (Nb,Ti,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]Cl	монацит-(Се)	(Ce,La)PO₄
Чевкинит (Ca,Ce) ₄ (Fe ²⁺ Mg) ₂ (Ti,Fe ³⁺) ₃ Si ₄ O ₂₂ Барит BaSO ₄ Церит (Ce,Ca) ₉ (Mg,Fe)Si ₇ (O,F) ₂₈ Барит ВаSO ₄	Баотит	Ba ₄ (Ti,Nb,Fe) ₈ O ₁₆ [Si ₄ O ₁₂]Cl	Сульфаты	
Церит (Ce,Ca) ₉ (Mg,Fe)Si ₇ (O,F) ₂₈	Чевкинит	(Ca,Ce) ₄ (Fe ²⁺ Mg) ₂ (Ti,Fe ³⁺) ₃ Si ₄ O ₂₂	Барит	BaSO₄
	Церит	(Ce,Ca) ₉ (Mg,Fe)Si ₇ (O,F) ₂₈		

Новые и предположительно новые минералы (предварительные названия и формулы)

Силикаты		Бя-титанит-1	CeNb ₂ Si ₂ O ₁₀
X1	$(Ce,Ca)_2(Al,Fe^{3+})_2[SiO_4]_3$	Бя-титанит-2	CeNbSiO ₆
X2	Ca ₃ Ce ₄ MgFe ³⁺ ₃ Al ₅ [SiO ₄] ₆ [SiO ₃ OH] ₄	Бя-титанит-3	CeFe³+SiO₅
X3	(Nd ₃ Ca) ₄ Nb ₅ Si ₂ O ₂₂	Карбонаты	
X4	(Ca ₃ Ce) ₄ Nb ₅ Si ₂ O ₂₁	Sr-бенстонит	(Sr,Ba) ₆ Ca ₆ (Ca,Mg)(CO ₃) ₁₃
X5	BaFe ²⁺ ₂ Nb ₂ Si ₂ O ₁₁ (OH,Cl)	кордилит-(La)	(Ca,Na)Ba(La,Ce) ₂ (CO ₃) ₃ F
бираит-(Се)	$Ce_2Fe^{2*}[SiO_4]_2(CO_3)$	Оксиды	
Ниобочевкинит	Ce ₄ Fe ²⁺ Fe ³⁺ (Nb,Ti) ₂ Si ₄ O ₂₂	ферсмит-(Се)	Ce(Ti,Nb) ₂ O ₆

Иркутск, 2002. С. 34.

7. Pouchou J.L. A new model for quantitative X-Ray microanalysis. Part 1. Applications to the analysis of homogeneous samples / J.L.Pouchou., F.Pichoir // Rech. Aerospat. 1984. V.3. P.13-38.

трального анализа. Методические рекомендации. Л.: Машиностроение, 1982. Вып. 3. 101 с.

9. Суворова Л.Ф. Методика количественного рентгеноспектрального микроанализа сложных карбонатных минералов / Л.Ф.Суворова, Е.И.Воробьев // Заводская лаборатория. 2002. Т.68, № 5. С.15-19.

8. Маренков О.С. Таблицы и формулы рентгеноспек-

* * * * *

TECHNIQUE OF QUANTITATIVE ELECTRON PROBE X-RAY MICROANALYSIS OF RARE-METAL AND RARE-EARTH MINERALS

L.F.Suvorova, A.A.Konev, A.A.Koneva, N.S.Karmanov, S.V.Kanakin

The technique of quantitative electron probe X-ray microanalysis has been developed to analyze rare-metal and rare-earth minerals. These minerals are destroyed under an electron beam. The optimum conditions of analytical signal production and registration were determined to minimize the temperature influence of electron beam on minerals. The correction of analytical signal for overlapping of analytical lines was made through coefficients of overlapping, provisionally defined using the samples, which do not contain the element determinated. The technique developed for reliability and precision satisfies the requirements of quantitative determinations and allows obtaining the information by microanalyzer about the chemical composition of rare-metal and rare-earth minerals with accuracy required for mineralogical investigations.