- 2. Экологический менеджмент на предприятии / С. Е. Дерягина, О. В. Астафьева, М. Н. Струкова, Л. В. Струкова. Екатеринбург : УрО РАН, 2007. 119 с.
- 3. Экологический менеджмент промышленных предприятий как путь уменьшения реального вклада стационарных источников в загрязнение окружающей среды свинцом в Российской Федерации / Т. В. Гусева, С. В. Макаров, А. В. Печников, Т. А. Иванова, Д. Х. Михайлиди. М.: РХТУ им. Д. И. Менделеева, 1998. 23 с.
- 4. Гусева Т. В. Интеграция как закономерный этап развития систем менеджмента // Менеджмент в России и за рубежом. 2003. № 5 [Электронный ресурс]. http://www.mevriz.ru/articles/2003/5/1096.html (дата обращения 20.11.2017)
- 5. Внедрение экологического менеджмента на предприятии / М. Н. Струкова, Л. В. Струкова, А. А. Яшин. Екатеринбург: Уральский гуманитарный институт, 2010. 112 с.

УДК 66.045.1

ЭКОНОМИЧЕСКИЕ ПАРАМЕТРЫ ТЕХНОЛОГИИ ГИДРОФОБИЗАЦИИ ПОВЕРХНОСТЕЙ ПРОМЫШЛЕННЫХ ТЕПЛООБМЕННИКОВ

AN ECONOMICAL PARAMETERS OF HYDROPHOBIZATION TECHNOLOGY OF SURFACES FOR INDUSTRIAL HEAT EXCHANGERS

Самсонова Н. А.

Нижегородский государственный архитектурно-строительный университет, г. Нижний Новгород, TC7-redblack@yandex.ru

Samsonova N. A.

Nizhny Novgorod State University of Architecture and Civil Engineering, Nizhny Novgorod

Аннотация: В работе рассмотрены экономические аспекты применения гидрофобных поверхностей в промышленных теплообменниках. Произведен расчет тепловой мощности

теплообменника при функционировании в капельном режиме конденсации.

Abstract: In the paper an economical aspects of application of hydrophobic surfaces in industrial heat exchangersis considered. A calculation of a heat output of a heat exchanger during an operation in a dropping mode of condensation is made.

Ключевые слова: гидрофобная поверхность; теплоотдача; теплообменник; конденсация; пар.

Key words: hydrophobic surface; heat transfer; heat exchanger; condensation; steam.

Как было показано в работе [1] на примере конденсатора КЦС-1(3) паровой турбины К-300-240 ЛМЗ, гидрофобизация поверхности паровой теплообмена стороны приведет c значительному К углублению вакуума в конденсаторе и, как следствие, повышению мощности (улучшению экономичности) турбины. По произведенной экономически выгодная потребителя предельная ДЛЯ стоимость производства (гидрофобизации) 1 м² теплообменной поверхности составит 3,9 тыс. руб., при условии сохранения поверхностью своих свойств в течение полугода. С определенной приближения, полученная оценка распространена и на другие современные конденсационные турбины сходной мощности.

Теплообменные аппараты с паровым обогревом общепромышленного применения значительно отличаются от рассмотренных ранее энергетических теплообменников по своим технико-экономическим параметрам. В связи с этим, необходимо отдельно произвести оценку предельной стоимости производства квадратного метра гидрофобной поверхности применительно к таким теплообменникам.

Наиболее широкое применение в промышленности находят пароводяные теплообменные аппараты, представленные в основном двумя типами: пластинчатыми и кожухотрубными.

В связи с тем, что коэффициенты теплоотдачи и теплопередачи расходов теплоносителей номинальных пластинчатых ДЛЯ раскрываются производителями, теплообменников не представляют собой коммерческую тайну, произведем расчет для кожухотрубного теплообменника типа $\Pi\Pi$. Несмотря громоздкость, теплообменники этого типа недороги, долговечны, удобны в эксплуатации, чистке, а поэтому широко распространены.

Технические характеристики теплообменника ПП1-17,2-0,7-4 представлены в табл. 1 [2, 3].

Таблица 1 Основные характеристики теплообменника ПП1-17,2-0,7-4

Поз.	Параметр	Обозначение	Единица измерения	Размерность
1	Площадь поверхности теплообмена	F	M ²	17,2
2	Номинальный тепловой поток	Q	МВт	2,41
3	Температура сетевой воды на входе	$t_{ m B1}$	°C	70
4	Температура сетевой воды на выходе	$t_{ ext{B2}}$	°C	150
5	Расход сетевой воды	G	т/ч	29,4
6	Количество трубок	n	шт.	124
7	Диаметр трубок наружный/внутренний	$d_{\scriptscriptstyle m H}/d_{\scriptscriptstyle m BH}$	M	0,018/0,016
8	Количество ходов воды	Z	шт.	4
9	Коэффициент теплопроводности материала трубок	$\lambda_{ m ct}$	Вт/(м·К)	130
10	Максимальное давление пара	P_{Π}	МПа	0,7

Определяем коэффициент теплопередачи теплообменника при работе в пленочном режиме:

$$K = \frac{Q}{F \cdot \Delta t} \cdot 10^6, \, \text{BT/(M}^2 \cdot \text{K)}, \tag{1}$$

где Δt — среднелогарифмический температурный напор, °C

Скорость воды в трубках определяем по формуле:

$$\omega = \frac{4 \cdot G \cdot z}{\rho \cdot n \cdot \pi \cdot d_{\text{BH}}^2 \cdot 3600}, \, \text{m/c}$$
 (2)

Число Нуссельта для канала круглого сечения находим из выражения:

$$Nu = 0.021 \cdot Re^{0.8} \cdot Pr^{0.43}, \tag{3}$$

где Re и Pr – числа Рейнольдса и Прандтля соответственно.

Коэффициент теплоотдачи для воды:

$$\alpha_{\rm B} = 0.7 \cdot \frac{\text{Nu} \cdot \lambda}{d_{\text{pur}}}, \, \text{BT/(M}^2 \cdot \text{K)},$$
(4)

где 0,7 – коэффициент, учитывающий снижение теплоотдачи от стенки к воде из-за отложения солей жесткости и иных загрязнений.

Коэффициент теплоотдачи для пара определяем из выражения:

$$\alpha_{\rm II} = \left(\frac{1}{K} - \frac{1}{\alpha_{\rm B}} \cdot \frac{d_{\rm H}}{d_{\rm BH}} - 1,15 \cdot \frac{d_{\rm H}}{\lambda_{\rm cT}} \cdot \lg \frac{d_{\rm H}}{d_{\rm BH}}\right)^{-1}, \, \text{BT/(M}^2 \cdot \text{K)}. \tag{5}$$

По имеющимся данным [4], коэффициент при капельной конденсации в 8–15 раз выше, чем при пленочной. Для дальнейшего расчета принимаем консервативную оценку увеличения коэффициента теплоотдачи в 8 раз. Таким образом, коэффициент теплопередачи аппарата при капельной конденсации вычисляем по формуле:

$$K' = \left(\frac{1}{\alpha_{\rm B}} \cdot \frac{d_{\rm H}}{d_{\rm BH}} + 1,15 \cdot \frac{d_{\rm H}}{\lambda_{\rm CT}} \cdot \lg \frac{d_{\rm H}}{d_{\rm BH}} + \frac{1}{8 \cdot \alpha_{\rm II}}\right)^{-1}, \, \text{BT/(M}^2 \cdot \text{K)}. \tag{6}$$

Определим тепловую мощность теплообменника при работе в капельном режиме:

$$Q' = K' \cdot F \cdot \Delta t \cdot 10^{-6}, \text{ MBT}$$
 (7)

Результат расчета сводим в таблицу 2.

Экономический гидрофобной эффект otприменения теплообменном аппарате общепромышленного поверхности В назначения состоит в возможности использования такого аппарата вместо модели большей мощности, работающей в пленочном режиме. Разница в стоимости между этими моделями и будет являться экономическим эффектом от внедрения. Необходимо отметить, что в отличие от энергетических теплообменников, где гидрофобизация поверхности приводит к постоянному во времени экономическому эффекту, для промышленных теплообменников это не так – экономический эффект имеет место только в момент покупки (табл. 2).

Таблица 2

Результаты расчета

Поз.	Параметр	Обозначение	Единица измерения	Размерность
1	Коэффициент теплопередачи (пленочный режим)	K	$BT/(M^2 \cdot K)$	3233
2	Скорость воды в трубках	ω	м/с	1,8
3	Число Рейнольдса	Re		94078
4	Число Прандтля	Pr	_	1,58
5	Число Нуссельта	Nu		244
6	Коэффициент теплоотдачи для воды	$\alpha_{\scriptscriptstyle \mathrm{B}}$	$BT/(M^2 \cdot K)$	8287
7	Коэффициент теплоотдачи для пара (пленочный режим)	$\alpha_{\scriptscriptstyle \Pi}$	$BT/(M^2 \cdot K)$	6127
8	Коэффициент теплопередачи (капельный режим)	K'	$BT/(M^2 \cdot K)$	6005
9	Мощность теплообменника (капельный режим)	Q'	МВт	4,48

По [2] определяем, что модель ПП1-17,2-0,7-4 может заменить модель ПП1-24,4-0,7-4, при этом разница в стоимости между ними составляет 9=115 тыс. руб.

Предельная величина затрат на производство 1 м² гидрофобной поверхности с учетом накладных расходов 20 %, срока службы теплообменника 10 лет и интервала между обновлением поверхности 0,5 года составит:

$$3 = \frac{115 \cdot 0.5 \cdot 0.8}{17.2 \cdot 10} = 0.27$$
 тыс. руб. (8)

полученной Из оценки следует, ЧТО возможность общепромышленного применения технологии гидрофобизации накладывает ограничения величину весьма жесткие на себестоимости.

Полученное значение максимальной стоимости производства 1 м^2 гидрофобной поверхности может быть использовано для

сужения области поиска при разработке оптимальной промышленно применимой технологии гидрофобизации.

Список использованных источников

- 1. Самсонова, Н. А. Оценка перспективности применения супергидрофобных поверхностей теплообмена в конденсаторах паровых турбин / Н. А. Самсонова // VII Всероссийский фестиваль науки: сборник докладов; в 2 т. Н. Новгород: ННГАСУ, 2017. Т. 1.
- 2. ГОСТ 28679-90 Подогреватели пароводяные систем теплоснабжения. Общие технические условия. М.: Стандартинформ, 2005. 11 с.: ил.
- 3. Аронсон, К. Э. Теплообменники энергетических установок: Учебное электронное издание / К. Э. Аронсон, С. Н. Блинков, В. И. Брезгин [и др.]. Екатеринбург: УрФУ, 2015. [Электронный ресурс]. URL: https://openedu.urfu.ru/files/book/ (дата обращения 20.11.2017)
- 4. Исаченко, В. П. Теплообмен при конденсации / В. П. Исаченко. М. : Энергия, 1977. 240 с. : ил.

УДК 621.313

ПРИМЕНЕНИЕ НАНОТЕХНОЛОГИЙ ДЛЯ СНИЖЕНИЯ ИЗНОСА ЩЕТОК В ЭЛЕКТРИЧЕСКИХ МАШИНАХ

THE APPLICATION OF NANOTECHNOLOGY TO REDUCE THE BRUSH WEAR IN ELECTRICAL MASHINES

Соболев Д. В., Изотов А. И., Леготин А. Б., Тимина Н. В. Вятский государственный университет, г. Киров izotov@vyatsu.ru

Sobolev D. V., Izotov A. I., Legotin A. B., Timina N. V. Vyatka state University, Kirov

Аннотация: В статье рассматривается возможность применения смазывающей щетки на основе дисульфида молибдена, которая позволяет снизить износ электрических щеток и контактных колец, а также повысить стабильность работы электрического контакта.