УДК 543.422.8

АППРОКСИМАЦИИ КОЭФФИЦИЕНТОВ ОСЛАБЛЕНИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В ОБЛАСТИ ЭНЕРГИИ 0,1-100 кэВ

А.Л.Финкельштейн, П.М.Фарков Институт геохимии СО РАН 664033, Иркутск, Фаворского, 1a finkel@igc.irk.ru

Поступила в редакцию 6 сентября 2002 г.

Для области энергий рентгеновского излучения 0.1-100 кэВ, представляющей интерес в современном рентгеноспектральном анализе, предложены простые вычислительные схемы для расчета коэффициентов поглощения и рассеяния. Выражения для расчета коэффициентов поглощения и рассеяния выбраны из предложенных ранее в литературе. Параметры выражений табулированы для элементов Z=1-92 на основе сравнительно новых теоретических и полуэмпирических данных по полным коэффициентам ослабления и поглощения. Относительное стандартное отклонение аппроксимации полных коэффициентов ослабления для области энергий меньше 1 кэВ варьирует в интервале 1-7 % отн., для области энергий больше 1 кэВ - как правило, менее 1 % отн.

Финкельштейн Александр Львович – кандидат технических наук, заведующий лабораторией рентгеновских методов анализа Института геохимии СО РАН. Область научных интересов: рентгеноспектральный анализ горных пород и других природных сред, взаимодействие рентгеновского излучения с веществом. Автор более 60 публикаций.

В спектрометрии рентгеновского излучения, а также в некоторых других смежных областях необходимы простые алгоритмы для расчета коэффициентов ослабления рентгеновского излучения в веществе. Для этих целей были предложены ряд простых вычислительных схем, аппроксимирующих зависимость от энергии и атомного номера. В табл. 1 приведены формулы. используемые в таких вычислительных схемах и часто упоминаемые в литературе по рентгеноспектральному анализу [1-10]. Оценки параметров выражений вычислительных схем опирались как на данные теоретических расчетов [11-14]. так и на экспериментальные, компилятивные [15] и полуэмпирические базы данных [16, 17].

Большинство алгоритмов, представленных в таблице, были созданы для ограниченных областей энергий, например, для области энергий рентгентгеноспектрального микроанализа <20 кэВ [3, 4, 5] или для рентгенофлуоресцентного анализа 1-40 кэВ [1, 2, 6-9], и не покрывают, каждый в отдельности, область энергий рентгеновского Фарков Павел Михайлович – аспирант Института геохимии СО РАН. Область научных интересов: рентгеноспектральный флуоресцентный анализ биологических объектов. Автор 11 публикаций.

излучения 0, 1-100 кэВ, доступную в современном рентгеноспектральном анализе. В настоящее время такие легкие элементы, как углерод, кислород, фтор (область энергий 0,2-0,7 кэВ), становятся обычными для рентгеноспектрального анализа. С другой стороны, рентгеноспектральная аппаратура оснащается генераторами до 75-100 кВ, и появляется возможность определения тяжелых элементов по К-спектрам. Некоторые из перечисленных алгоритмов включают аппроксимацию зависимости от атомного номера [4, 5, 7], которая, в общем случае, увеличивает погрешность аппроксимации. В области энергий рентгеновского излучения. где преобладает фотоэффект (<10-50 кэВ), обычно используют аппроксимации полных коэффициентов ослабления, которые равны сумме коэффициентов поглощения и рассеяния. В области энергий излучения более 20 кэВ эффекты рассеяния становятся значимыми, особенно для легких элементов, и энергетическая зависимость существенно меняется и определяется фотопоглощением и комптон-эффектом. Для области энергии 0,1-1000 кэВ И.Орлик и соавторы [10] предложили аппроксимации полных коэффициентов ослабления, основанные на данных М. Бергера и Дж. Хаббела [18] для области больше 1 кэВ и Б. Хенке и соавторов [17] для области меньше 1 кэВ.

Кроме полных коэффициентов ослабления для проведения вычислений в рентгеновской спектрометрии часто необходимы расчеты коэффициентов рассеяния и фотопоглощения. Для расчетов коэффициентов поглощения можно воспользоваться методикой вычитания ф=м-у. Однако такая процедура неприемлема для легких элементов и энергий, для которых преобладает комптоновское рассеяние. Раздельная аппроксимация коэффициентов поглощения и когерентного и некогерентного рассеяния предложена О.С.Маренковым [8] (табл. 1) для энергий 1-100 кэВ.

Таблица 1

	Аппроксимационные формулы для расчета ко	эффициентов ослабл	ения
Автор	Аппроксимационная формула	Диапазон Z, E (кэВ)	Данные, лежащие в
		илиλ(ангстрем)	основе аппроксимации
Leroux J. [1] (1961)	$\mu = C\lambda^n$	2 <z<100< td=""><td>Экспериментальные</td></z<100<>	Экспериментальные
		0,17837<λ<10	данные
Tinh T. & Leroux J.	$\mu = CE_o \lambda^n$	2 <z<94< td=""><td>Преимущественно</td></z<94<>	Преимущественно
[2] (1979)	$\mu = D\lambda^n$	1 <e<40< td=""><td>экспериментальные</td></e<40<>	экспериментальные
		1 <z<16< td=""><td>данные</td></z<16<>	данные
Heinrich K.F.J. [3]	$\mu = C\lambda^{n}$	3 <z<94< td=""><td>Экспериментальные</td></z<94<>	Экспериментальные
(1966)		12>\u03cb>0,7	данные
Heinrich K.F.J. [4]	$\mu = C(Z^4 / A) (12397/E)^n \cdot (1 - exp((-E+b)/a))$	1 <z<94< td=""><td>Экспериментальные</td></z<94<>	Экспериментальные
(1986)	$C = \Sigma C_i Z^i ; n = \Sigma n_i Z^i ; b = \Sigma b_i Z^i ; a = \Sigma a_i Z^i;$	0.2 <e<20< td=""><td>данные, теор. данные</td></e<20<>	данные, теор. данные
	ЕвэВ		W.J.Veigele (1973) [11],
	Спец. формула для EN,>E		таблич.данные B.L.Henke
			& E.S.Ebisu (1974) [16]
Teisen R. & Vollath D.	$\mu = C\lambda^{\alpha} Z^{\beta}$	3 <z<94< td=""><td>Экспериментальные</td></z<94<>	Экспериментальные
[5] (1967)		12>λ>0,7	данные
		16>λ>0.7 для Z<18	
Montenegro E.C.	$ln(\mu) = A_0 + A_1 X + A_2 X^2 + A_3 X^3$	6 <z<33< td=""><td>Теор. версия, таблицы</td></z<33<>	Теор. версия, таблицы
e.a. [6] (1978)	X = ln(E)	λ: ClK-SnK	E.Storm & H.Israel [12]
		λ: PdL-PuL	(1970)
Poehn C., Wernisch J.	$\mu = \exp(k \ln(E) + d);$	11 <z<83< td=""><td>Компиляция теор. и</td></z<83<>	Компиляция теор. и
e.a. [7] (1984)	$d = a + bZ + cZ^2 + cZ^3 + eZ^4$	1 <e<50< td=""><td>эксп. данных McMaster</td></e<50<>	эксп. данных McMaster
			e.a. [15] (1969)
Маренков О.С. [8]	$\tau = \tau_0 + \tau_1 E^1 + \tau_2 E^2 + \tau_3 E^3 + \tau_4 E^4$	1 <z<94< td=""><td>Теор. данные для</td></z<94<>	Теор. данные для
(1982)		1 <e<150< td=""><td>τ - Scofield [13], (1973),</td></e<150<>	τ - Scofield [13], (1973),
	$\sigma_{int} = \frac{(1 + \sigma_4 E)}{1 + \sigma_4 E}$		для σ -Hubbell e.a. [14]
	$(\sigma_0 + \sigma_1 E + \sigma_2 E^2 + \sigma_3 E^3)$		(1975)
	$\sigma_{cob} = (\sigma_0 / E + \sigma_1 + \sigma_2 E)^{-1}$		
Gerward L. [9] (1986)	$\mu = C / E^3 + D / E^4 + \sigma_{KN} N_A (Z / A)$	2 <z<94< td=""><td>McMaster e.a. [15] (1969)</td></z<94<>	McMaster e.a. [15] (1969)
	$E > EK; \mu = C / E^n + \sigma_{KN} N_A(Z / A)$	2 <e<40< td=""><td></td></e<40<>	
	ELI < E < EK, EMI, < E < ELIII		
Orlic I. e.a. [10]	$ln(\mu) = A_0 + A_1 X + A_2 X^2 + A_3 X^3 + \sigma_{KN} N_A / A$		Henke e.a. (1982) [17],
(1993)	$X = ln(\lambda)$	0,1 <e<1000< td=""><td>Berger & Hubbell прог-</td></e<1000<>	Berger & Hubbell прог-
		1 <z<92< td=""><td>рамма ХСОМ [18] (1987)</td></z<92<>	рамма ХСОМ [18] (1987)

Обозначения формул: μ - массовый коэффициент ослабления; τ - коэффициент фотопоглощения; σ -коэффициент рассеяния (индексы inc и coh обозначают некогерентное и когерентное рассеяние); σ_{кN} – сечение Клейна-Нишины; λ, *E* - длина волны и энергия рентгеновского излучения; Z и A – атомный номер и масса элемента. Остальными буквами обозначены параметры формул.

В настоящей работе такой подход распространен на область энергий 0, 1-100 кэВ. Для определения параметров аппроксимации использованы обновленные полуэмпирические данные для энергии меньше 1 кэВ [19] и теоретические данные по полным коэффициентам ослабления для энергии больше 1 кэВ [20]. Данные по коэффициентам рассеяния взяты из работы [14]. Современные теоретические данные довольно хорошо согласуются с экспериментальными, не содержат погрешности измерений и не имеют систематической погрешности, исключая, быть может, области вблизи краев поглощения. Оценки неопределенности коэффициентов поглощения приведены в недавнем обзоре [21]. Для области энергий 0, 1-0,5 кэВ неопределенность составляет порядка 100-200 %; для области энергий 0,5-1 кэВ – 10-20 %; для области энергий 1-5 кэВ – 5 % и для области энергий 5-100 кэВ – 2 %.

Для аппроксимации энергетической зависимости коэффициентов когерентного и некогерентного рассеяния и поглощения использованы следующие выражения:

$$\sigma_{coh} = (1 + a_4 E) / (a_0 + a_1 E^1 + a_2 E^2 + a_3 E^3) , \quad (1)$$

$$\sigma_{inc} = E^2 / (a_0 + a_1 E^1 + a_2 E^2 + a_3 E^3) , \qquad (2)$$

$$\tau = a_1 E^{-1} + a_2 E^{-2} + a_3 E^{-3} + a_4 E^{-4} \quad . \tag{3}$$

Параметры выражения для σ_{coh} (1) из работы [8] (см. табл. 1) были уточнены с помощью процедуры Ньютона минимизации стандартного отклонения. При этом иногда достигалось уменьшение относительного стандартного отклонения в 1.5-2 раза. На рис. 1 приведен пример поведения относительной погрешности приближения ($\Delta = (\sigma_{coh} - \sigma_{coh} pacч.) / \sigma_{coh}$) для нескольких элементов.

Рис.1. Зависимость погрешности аппроксимации (Δ) и коэффициента когерентного рассеяния (sigma_coh) от энергии рентгеновского излучения

Для сравнения на рис.1 приведена зависимость σ_{coh} от энергии излучения. Максимальное отклонение составляет порядка 3 % отн. В области, где рассеяние максимально (<1 кэВ), отклонение уменьшается. Относительное стандартное отклонение для большинства элементов - менее 1 %.

Выражение для о ис [8] было модифицировано с учетом асимптотического поведения сечения некогерентного рассеяния при малых энергиях σ_{inc}~Е². Были опробованы несколько процедур оценки параметров выражения (2): МНК, интерполяция сплайнами и интерполяция с выбором узлов из условия минимума относительного стандартного отклонения. Выбор был сделан в пользу последнего варианта. На рис.2 приведен пример зависимости относительной погрешности интерполяции и коэффициентов некогерентного рассеяния для нескольких элементов. Область интерполяции разбита на две области 0.1-1 кэВ и 1-150 кэВ. В области менее 1кэВ, где вкладом некогерентного рассеяния в полный коэффициент ослабления можно пренебречь, погрешность менее 10 % отн. обеспечивает выражение $s_{inc} = aE^2$. В области больше 1 кэВ максимальная погрешность аппроксимации с помощью выражения (2) составляет порядка 4 % отн. Относительное стандартное отклонение варьирует в пределах порядка 0,5-3 % для различных элементов.

коэффициента некогерентного рассеяния (sigma_inc) от энергии рентгеновского излучения

Параметры выражения (3) для областей непрерывности коэффициентов фотопоглощения 0.09

0.06

0.03

0.00

-0.03

между краями поглощения были определены с помощью процедуры МНК с весом, который сам являлся параметром оптимизации.

$$min - \sum \frac{\left(\tau(E_i) - \tau_i\right)^2}{W} \cdot W = \tau_i^n.$$

Оптимальное значение находится в пределах n = 0,7 - 1. Выбранный таким образом вес обеспечивает приблизительно равномерное распределение относительной погрешности. Пример поведения относительной погрешности аппроксимации приведен на рис.3. В области энергии 1-100 кэВ максимальная погрешность не превышает 3 % отн. В области меньше 1кэВ отклонения могут достигать 6-9 % отн. Такое поведение погрешности согласуется с общей тенденцией увеличения неопределенности коэффициентов поглощения в области энергии менее 1 кэВ и значительно меньше неопределенности, упомянутой выше.

Рис.3. Зависимость погрешности аппроксимации (Δ) и коэффициента фотопоглощения (tau) от энергии рентгеновского излучения

Коэффициенты уравнений (1)-(3) табулированы для атомных номеров 1-92. Относительное стандартное отклонение аппроксимации полных коэффициентов ослабления для области энергий меньше 1 кэВ варьирует в интервале 1-7 % отн., для области энергий больше 1 кэВ - как правило, менее 1 % отн.

В табл.2 приведены значения параметров выражения (3) для расчета коэффициентов фотопоглощения первых 26 элементов, включающих основные породообразующие элементы. В таблице приведены также энергии границ непрерывности между краями поглощения (Eq), оценки стандартного отклонения аппроксимации и границы применимости в области энергий больше К-края поглощения, между К и L3 краями поглощения и L3 краем и энергией 0, 1 кэВ.

Таблица 2

Элемент	a,	a ₂	a ₃	a ₄	Eq, кэВ	Ст. откл.	Граница
1	2	3	4	5	6	7	8
۱H	0	0	6,44302E+00	5,87706E-01	0,1	0,078	>K
² He	3,87840E-02	-2,25060E+00	5,32081E+01	2,54487E+00	0,1	0,079	>K
³ Li	1,95902E-01	-1,06437E+01	2,36910E+02	-9,18268E+00	0,1115	0,055	>K
⁴ Be	1,46780E-01	-1,64093E+01	6,26350E+02	-4,22256E+01	0,1115	0,054	>K
5B	2,08529E-01	-2,72789E+01	1,34807E+03	-1,46465E+02	0,188	0,031	>K
	0	-4,11361E+02	2,02613E+02	-2,68331E+00	0,1	0,002	K - 0,1
6C	2,59447E-01	-4,28130E+01	2,65862E+03	-4,45525E+02	0,2842	0,026	>K
	0	-8,66676E+02	4,25830E+02	-9,88294E+00	0,1	0,006	K - 0,1
7N	3,27216E-01	-5,91518E+01	4,32323E+03	-9,47570E+02	0,4099	0,019	>K
	0	0	-8,01213E+02	5,15848E+02	0,1	0,009	K - 0,1
80	3,50466E-01	-6,89857E+01	6,47318E+03	-1,76066E+03	0,5431	0,018	>K
	0	1,04063E+02	1,31364E+02	-7,65706E+00	0,1	0,025	K - 0,1
⁹ F	5,19482E-01	-9,35153E+01	9,03381E+03	-3,23537E+03	0,6967	0,012	>K
	-5,58318E+02	6,04370E+02	7,63719E+01	-4,49633E+00	0,1	0,009	K - 0,1
¹⁰ Ne	5,82740E-01	-1,14762E+02	1,30582E+04	-5,59663E+03	0,8702	0,011	>K
	-3,53995E+02	5,88977E+02	1,92735E+02	-1,27890E+01	0,1	0,014	K - 0,1

Параметры для расчета коэффициентов фотопоглощения для энергий 0.1-100 кэВ и для атомных номеров от 1 до 26

Окончание	табл.	2
-----------	-------	---

1	2	3	4	5	6	7	8
¹¹ Na	0	-1,09682E+02	1,73039E+04	-9,86433E+03	1,0721	0,014	>K
	-2,87636E+02	6,68999E+02	2,88345E+02	-2,26435E+01	0,1	0,018	K - 0,1
¹² Mg	3,31682E-01	-1,43011E+02	2,30618E+04	-1,41387E+04	1,305	0,008	>K
	-3,45517E+02	8,54180E+02	4,78338E+02	-4,43501E+01	0,1	0,037	K - 0,1
¹³ AI	5,79944E-01	-1,73465E+02	2,92172E+04	-2,17441E+04	1,56	0,005	>K
	-2,59434E+02	8,47553E+02	7,06003E+02	-7,13375E+01	0,10	0,028	K - 0,1
¹⁴ Si	6,83640E-01	-2,03814E+02	3,80574E+04	-3,22261E+04	1,8389	0,011	>K
	-3,19715E+02	1,22067E+03	7,69303E+02	-8,98008E+01	0,1	0,052	K - 0,1
¹⁵ P	7,77058E-01	-2,27315E+02	4,60845E+04	-4,57183E+04	2,1455	0,005	>K
	-4,69827E+02	1,71585E+03	9,08813E+02	-1,37176E+02	0,135	0,062	K - L3
	0	0	2,19969E+01	-1,31728E+00	0,1	0,000	L3 - 0,1
¹⁶ S	0	-1,64468E+02	5,62510E+04	-6,00158E+04	2,472	0,009	>K
	-3,03786E+02	1,39093E+03	1,69417E+03	-2,75638E+02	0,1625	0,035	K - L3
	0	2,56713E+02	-1,15062E+01	0	0,1	0,001	L3 - 0,1
¹⁷ Cl	0	-1,69256E+02	6,51686E+04	-7,72182E+04	2,8224	0,010	>K
	-1,73283E+02	1,12690E+03	2,26881E+03	-4,07747E+02	0,2	0,009	K - L3
	-2,10420E+02	4,05923E+02	-2,09571E+01	0	0,1	0,005	L3 - 0,1
¹⁸ Ar	0	-1,76095E+02	7,35101E+04	-9,90470E+04	3,2029	0,007	>K
	-1,57823E+02	1,10124E+03	2,84078E+03	-5,42092E+02	0,2484	0,024	K - L3
	-4,09637E+02	5,10204E+02	-2,70716E+01	0	0,1	0,021	L3 - 0,1
¹⁹ K	0	-1,96350E+02	9,29353E+04	-1,31933E+05	3,6074	0,009	>K
	-1,65811E+02	1,34879E+03	3,61438E+03	-7,78459E+02	0,2946	0,007	K - L3
	-1,12804E+02	6,08603E+02	-3,78873E+01	0	0,1	0,004	L3 - 0,1
²⁰ Ca	-2,75755E-02	-2,28985E+02	1,13051E+05	-1,83245E+05	4,0381	0,006	>K
	-1,31921E+02	1,27483E+03	4,99283E+03	-1,29942E+03	0,3462	0,006	K - L3
	-7,05213E+02	9,90970E+02	-7,05967E+01	0	0,1	0,011	L3 - 0,1
²¹ Sc	3,33183E-02	-1,76627E+02	1,22807E+05	-2,18388E+05	4,4928	0,006	>K
	-1,48270E+02	1,48465E+03	5,22181E+03	-1,34786E+03	0,3987	0,006	K - L3
	-4,35151E+02	1,02363E+03	-1,03052E+02	3,13791E+00	0,1085	0,005	L3 - 0,1
²² Ti	-2,43651E-01	-2,11233E+02	1,39578E+05	-2,70178E+05	4,9664	0,006	>K
	-1,30170E+01	6,01944E+02	7,93337E+03	-2,62413E+03	0,4538	0,015	K - L3
	-1,54909E+03	1,78365E+03	-2,24013E+02	9,55678E+00	0,1085	0,010	L3 - 0,1
²³ V	-4,15323E-01	-1,97498E+02	1,57058E+05	-3,32262E+05	5,4651	0,006	>K
	0	6,25011E+02	8,93595E+03	-3,04035E+03	0,5121	0,016	K - L3
	-1,41090E+03	1,78674E+03	-1,94292E+02	6,52339E+00	0,1085	0,006	L3 - 0,1
²⁴ Cr	-1,85846E+00	-5,93444E+01	1,80239E+05	-4,14161E+05	5,9892	0,004	>K
	0	4,07672E+02	1,19515E+04	-4,83654E+03	0,5741	0,021	K - L3
	-1,07989E+03	1,72825E+03	-1,67422E+02	5,02107E+00	0,1085	0,022	L3 - 0,1
²⁵ Mn	-9,30194E-01	-1,52201E+02	2,03708E+05	-5,05486E+05	6,539	0,004	>K
	0	5,85398E+02	1,29121E+04	-5,38959E+03	0,6387	0,010	K - L3
	-1,36133E+03	2,09739E+03	-2,33877E+02	7,31748E+00	0,1085	0,015	L3 - 0,1
²⁶ Fe	-1,24087E+00	-1,29568E+02	2,34346E+05	-6,23895E+05	7,112	0,004	>K
	0	6,21239E+02	1,52677E+04	-6,83680E+03	0,7068	0,011	K - L3
	-1,05249E+03	1,95350E+03	-1,31878E+02	0	0,1085	0,024	L3 - 0,1

Полный файл данных параметров (в формате Excel) для расчета коэффициентов поглощения и

pacceяния доступен по запросу на электронный aдpec: finke@igc.irk.ru

ЛИТЕРАТУРА

1. Leroux J. Method for finding mass-absorption coefficients by empirical equations and graphs // Advances in X-Ray Analysis. 1961. V.5. P.153-160.

2. Thinh T.P. New basic empirical expression for computing tables of X-Ray mass attenuation coefficients / T.P.Thinh., J. Leroux // X-Ray Spectrom. 1979. V.9, №2. P.85-91.

3. Heinrich K.F.J. X-Ray absorption uncertainty // The Electron Microprobe. N.Y.: Wiley, 1966. P.296-377.

4. Heinrich K.F.J. Mass Absorption Coefficients for Electron Probe Microanalysis. // 11th International Congress on X-Ray Optics and Microanalysis. 1986. P.67-119.

5. Theisen R. Tabellen der Massenschwashungckoeffizienten von Rontgenstrahlen Verlag Stahleisien M.B.H./ R.Theisen, D.Vollath. Dusseldorf, 1967.

6. Montenegro E.C. K and L X-Ray mass attenuation coefficients for low-Z materials / E.C.Montenegro, G.B.Baptista., P.W.E.P. Duarte // Atomic Data and Nucl. Data Tables. 1978. V.22, №2. P.131-177.

7. Wernisch J. m/r Algorithm valid for 1 keV<E<50 keV and 11<Z<83 / J.Wernisch, C.Poehn, W.Hanke, et al. // X-Ray Spectrom. 1984. V.13, №4. P.180-181.

8. Маренков О.С. Таблицы и формулы рентгеноспектрального анализа: Методические рекомендации. Л.: Машиностроение, 1982. Вып.3. 101 с.

9. Gerward L. Empirical Absorption Equations for Use in X-ray spectrometric Analysis // X-Ray Spectrom. 1986. V.15, №1. P.29-33.

10. Orlic I. Parameterization of the total mass attenuation coefficients in energy range 0.1-1000keV / I.Orlic, K.K.Loh, C.H.Sow, et al. // Nuclear Instruments and Methods in Physics Research. 1993. B74. 352-361.

11. Veigele W.J. Photon cross sections from 0.1 keV to 1 MeV for elements Z=1 to Z=94. // Atomic Data Tables. 1973. V.5, №1. P.51-111.

12. Storm E. Photon cross-section from 1 keV to 100 MeV for elements Z=1 to Z=100 / E. Storm, H. Israel // Nuclear Data Tables. 1970. A7. №6. P.565-681.

13. Theoretical photoionisation cross sections from 1 to 1500 keV: Rep. UCRL-51326 // Lawrence Livermore Labor; J.H. Scofield, 1973.

14. Hubbell J.H. Atomic form factors, incoherent scattering functions and photon scattering cross sections / J.H.Hubbell, Wm.J.Veigele., E.A.Briggs, et al. // J.Phys.Chem. Ref.Data. 1975. V.4, №3. P.471-538.

15. Compilatoin of X-Ray cross-sections: Report UCRL-50174 Sec.I, Sec.II / Livermore Lawrence Radiation Laboratory, University of California; W.H. McMaster, N.K.Del-Grande, J.H. Mallett, J.H. Hubbell. 1969, 1970.

16. Henke B.L. Low energy X-ray and electron absorption within solids / B.L.Henke, E.S.Ebisu // Adv. X-Ray Anal. 1974. V.17. P.150-213.

17. Henke B.L. Low-energy x-ray interaction coefficients: Photoabsorption, scattering, and reflection. E=10-2000eV Z=1-94 / B.L. Henke, P. Lee, T.J.Tanaka, et al. // Atomic Data and Nuclear Data Tables. 1982. V.27. P.1-144.

18. XCOM: Photon Cross sections on a Personal Computer: Report NBSIR 87-3597/ M.J.Berger, J.H.Hubbell 1987. 19. Henke B.L. X-ray Interactions: Photoabsorption, Scattering, Transmission and Reflection at E=50-30000 eV, Z=1-92 / B.L.Henke, E.M.Gullikson, J.C.Davis // Atomic Data and Nuclear Data Tables. 1993. V.54, №2. P.181-342. 20. Tables of Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional substances of dosimetric interest: Report NISTIR 5632 / J.H.Hubbell and S.M.Seltzer. 1995.

21. Hubbel J.H. Compilation of photon cross sections: some historical remarks and current status //X-Ray Spectrom. 1999. V.28, №4. P.215-223.

* * * * *

APPROXIMATION OF X-RAY ATTENUATION COEFFICIENTS IN THE ENERGY RANGE 0, 1 TO 100 KEV A.L.Finkelshtein, P.M.Farkov

The calculating scheme for generating mass absorption and scattering coefficients in the photon energy range of X-ray analysis interest 0,1-100 keV is proposed. Formulae for the calculation of photoabsorption and scattering coefficients are selected from those early presented in the. Fitting parameters of formulae are tabulated for elements Z=1-92 on the base of theoretical and semi-empirical databases from literature. The relative standard deviation of the fit of mass attenuation coefficients in the energy range less then 1 keV is of the order of 1 to 7 % and in the energy range 0,1-100 keV is generally less then 1 %.