РЕНТГЕНОФАЗОВЫЙ, ТЕРМОГРАВИМЕТРИЧЕСКИЙ И СПЕКТРАЛЬНЫЙ АНАЛИЗ ДИОКСОСЕЛЕНАТОВАНАДАТА АММОНИЯ

В.Н.Красильников*, А.Д.Галактионов**, В.К.Слепухин*** *Институтхимии твердого тела УрО РАН, 620219, Екатеринбург, ул. Первомайская, 91 **Уральский государственный экономический университет, 620144, Екатеринбург, ул. 8 Марта, 62 *** Уральский государственный технический университет, 620002, Екатеринбург, ул. Мира, 19

Методами рентгенофазового, микроскопического, термо-гравиметрического анализов изучены состав, условия образования и свойства нового комплексного соединения ванадия (V) NH4[VO2(SeO4)(H2O)2]H2O. На основании данных колебательной спектроскопии высказано мнение о структуре ближайшего окружения ванадия в его кристаллической решетке.

Красильников Владимир Николаевич -ведущий научный сотрудник Института химии твердого тела УрО РАН, кандидат химических наук, старший научный сотрудник. Область научных интересов: химия твердого тела и координационных соединений. Автор свыше 120 научных работ.

Галактионов Александр Дмитриевич - доцент кафедры моделирования и компьютерных технологий Уральского государственного экономического университета, кандидат химических наук, доцент.

Область научных интересов: физико – химический анализ и компьютерные технологии. Автор 40 научных публикаций.

Слепухин Виталий Константинович заместитель декана физико – технического факультета Уральского государственного технического университета, доцент кафедры физико – химических методов анализа, кандадат химических наук, старший научный сотрудник.

Область научных интересов: оптическая спектроскопия кристаллических и стеклообразных материалов, молекулярный спектральный анализ.

Автор свыше 130 научных публикаций.

Комплексные соединения ванадия (V). содержащие группы VO₂⁺ и ЭО₁²⁻ (Э=S. Se) и координированные молекулы воды, привлекают внимание специалистов по причине их отношения к активному компоненту ванадиевых катализаторов окисления диоксида серы контактным способом [1-3]. Из числа этих соединений наиболее полно изучен гидратированный диоксосульфатованадат (V) калия К[VO₂(SO₁)(H₂O)₂]H₂O, впервые описанный Берцелиусом как K2O4V2O242SO346H2O[4]. Присутствие в его кристаллической структуре изогнутой диоксованадиевой группы VO2+, координированного бидетантно иона SO₄²⁻и неравноценно-связанных молекул воды первоначально было установлено по данным ИК-спектроскопии [1,2] и затем подтверждено рентгеноструктурным анализом [5]. согласно которому К[VO₂(SO₄)(H₂O)₂]H₂O имеет цепочечное строение. Причем в цепях, вытянутых вдоль оси, октаэдры VO₆ связаны между собой мостиковыми тетраэдрами SO, и каждый октаэдр включает по две концевые связи V - О с межатомными расстояниями 0,1613 и 0,1641 нм, расположенные под углом 103,5°.

В настоящее время изучены условия образования и свойства (главным образом, данные колебательной спектроскопии, ЯМР⁵¹V, рентгенофазового, микроскопического и термогравиметрического анализов) соединений следующих составов: $M[VO_2(SO_1)(H_2O)_2]H_2O$ (M = K. Rb, Tl, NH₁) [1, 3, 6-8], M[VO₂(SeO₁)(H₂O)₂]H₂O (M = K, Rb. Cs) [9.10], $M[VO_2(SO_1)(H_2O)_2]$ (M = Cs. NH₁) $[8,11], M_{0.67} Na_{0.33} [VO_2(SO_4)(H_2O)_2] (M = K, Rb, Cs,$ NH₁) [12.13] и К[VO₂(SO₁)(H₂O)] [5]. Результаты сравнительного анализа имеющихся для этих соединений физико-химических характеристик указали [14] на их изоструктурность в соответствующих рядах, более того, M[VO₂(SO₁)(H₂O)₂] и M_{0.67} Na_{0.33} [VO₂(SO₄)(H₂O)₂] могут быть объединены в один общий ряд [11]. Данная работа была предпринята с целью изучения условий образования и свойств еще одного члена изоструктурного ряда М[VO₂(SeO₁)(H₂O)₂]H₂O. где место М+ занимает ион аммония. Предварительные сведения о нем сообщены в работах [14. 15].

Синтез $NH_4[VO_2(SeO_4)(H_2O)_2]H_2O$ проводили путем добавления малыми порциями охлажденной $4NH_2SeO_4$ к насыщенному раствору NH_4VO_3 при интенсивном перемешивании. Выпавшие желтые кристаллы отделяли от раствора декантацией, промывали этанолом на вакуумном фильтре и высушивали на воздухе при комнатной температуре. С целью получения $K[VO_2(SeO_4)(H_2O)_2]H_2O$ и $NH_4[VO_2(SO_4)(H_2O)_2]H_2O$ использовали альтернативные методики [8-10]. Фазовый контроль осуществляли с помощью поляризационного микроскопа ПОЛАМ C-112 в проходящем свете и рентгеновских дифрактометров ДРОН–2.0 и STADY – Р (STOE, Germany) в Си К., - излучении. Термогравиметрический анализ выполняли на дериватографе Д – 1500 Д при скорости нагревания 2.5 град/мин в воздушной среде. ИК – спектры индивидуальных соединений, приготовленных в виде суспензий в вазелиновом масле, снимали на спектрофотометре Specord 75 IR в интервале 4000–400 см⁻¹, спектры КРС порошков – на спектрофотометре ДФС – 52 с аргоновым лазером в интервале 1500 – 200 см⁻¹. Для химического анализа использовали стандартные методики.

Согласно данным фазового и химического анализов. в результате проведенного эксперимента было синтезировано индивидуальное соединение состава $NH_1[VO_2(SeO_1)(H_2O)_2]H_2O$, его межплоскостные расстояния приведены в табл. 1. В порошкообразном состоянии NH, [VO, (SeO₁)(H₂O)₂]H₂O, как и другие члены ряда $M[VO_2(SeO_1)(H_2O)_2]H_2O$, окрашен в желтый цвет. Под микроскопом наблюдаются призматические кристаллы, вытянутые параллельно оси оптической индикатрисы N, и представляющие собой комбинацию трех взаимно перпендикулярных пинакоидов (100). (010). (001) и двух ромбических призм (110). (011). Острый угол между гранями ромбической призмы (011) при биссектрисе N, равен 64°. Показатели преломления имеют следующие значения: N = 1,658 (желтый). N_m = 1.632 (светло – желтый). N_p = 1.590 (бесцветный). Погасание во всех наблюдаемых под микроскопом сечениях монокристаллов $NH_{1}[VO_{2}(SeO_{1})(H_{2}O)_{2}]H_{2}O$ и их обломков прямое, сингония ромбическая.

Таблица 1

1 (*)				2		3	
d, Å	1, %	d, Å	I, %	d, Å	I, %	d, Å	I, %
6,4750	36,6	2,3662	2,9	8,970	15	6,092	30
6,0970	3,1	2,3419	1,6	8,043	45	5,717	25
5,4420	100,0	2,3284	3,3	7,375	70	5,425	70
5,3540	3,5	2,2733	3,4	6,281	100	4,203	20
5,0210	32,6	2,2174	3,4	5,659	25	3,539	10
3,9706	8,5	2,0564	2,2	4,552	30	3,255	15
3,8778	4,1	2,0324	2,9	4,179	30	3,169	15
3,6663	2,2	1,9873	2,3	4,040	70	3,028	100
3,6161	8,0	1,9401	1,6	3,969	70	2,969	35
3,3257	4,4	1,9287	2,9	3,708	90	2,879	65
3,2401	12,9	1,9043	1,6	3,419	70	2,709	15
3,1660	7,6	1,8821	3,4	3,187	35	2,604	40

Межплоскостные расстояния (d, Å) и относительные интенсивности (I, %) $NH_4[VO_2(SeO_4)(H_2O)_2]H_2O(1), NH_4[VO_2(SeO_4)](2)$ и $2VO_2$ · SeO₂(3)

Окончание табл. 1

3,0827	11,4	1,8314 *	2,9	3,128	85	2,405	5
3,0488	6,0	1,7883	2,3	2,814	15	2,327	5
3,0209	16,8	1,7629	2,0	2,641	30	2,233	5
2,9782	16,1	1,7457	2,0	2,607	25	2,154	15
2,9177	9,3	1,7068	2,2	2,449	40	2,021	5
2,8415	3,5	1,6830	2,2	2,282	10	1,991	10
2,7754	3,4	1,6776	2,8	2,161	15	1,933	10
2,6798	5,1	1,6152	2,2	2,099	10	1,845	10
2,6076	2,2	1,6004	3,4	1,890	15	1,811	5
2,5887	2,9	1,5657	3,5	1,864	10	1,779	20
2,5114	2,0	1,5051	4,8	1,824	5	1,709	5
2,4728	3,4	1,3440	8,2			1,691	15
2,4045	2,9					1,630	10

(*) – снято на STADI – Р (STOE, Germany)

Результаты химического анализа NH₁[VO₂(SeO₁)(H₂O)₂]H₂O, %

	NH ₃	V	SeO ₃	H ₂ O
Найдено	5,69	17,16	42.64	18,10
Вычислено	5.72	17.10	42.61	18,12

Как видно из рис. 1 и табл.2. ИК – спектры $M[VO_2(SeO_4)(H_2O)_2]H_2O(M = K. NH_4)$ мало отличаются друг от друга. что хорошо согласуется с данными рентгенофазового и микроскопического анализов и свидетельствует о единстве структурного типа соединений.

В ИК – спектре К[VO₂(SO₄)(H₂O)₂]H₂O [1.2] колебания диоксованадиевой группы характеризуются тремя интенсивными полосами 936 (симметричные колебания) и 902. 876 см⁻¹ (асимметричные колебания). что свидетельствует [16] об ее угловой конфигурации и соответствует данным рентгено – структурного анализа [6]. На бидетантный мостиковый тип координации иона SO₄²⁻ атомами ванадия

указывает проявление в ИК – спектре частот его
симметричных колебаний п ₁ (1003 см ⁻¹) и v ₂ (490
и 440 см-1). активных в спектре КРС [16], наряду
со снятием вырождений частот асимметричных

Таблица 2

Волновые числа, см⁻¹, максимумов полос поглощения в ИК – спектрах MIVO_(SeO_)(H_O)_IH_O, 1 – M = K, 2 – M = NH

		- 1	
	1		2
3525	v (H ₂ O)	3530	n (H ₂ O)
3490		3480	ν (NH ₄)
3325		3330	
		3210	
1690	δ (H ₂ O)	1685	δ (H ₂ O)
1635		1630	
		1416	v ₂ (NH ₄)
936	v (VO ₂)	936	v (VO ₂)
900		897	
885		886	
860	v ₃ (SeO ₄)	862	v ₃ (SeO ₄)
825	v ₁ (SeO ₄)	823	v ₁ (SeO ₄)
743	ρ (H ₂ O)	738	ρ (H ₂ O)
658		660	
570		570	
525	v (V – O)	523	v (V – O)
420	v_4 (SeO ₄)	420	v_4 (SeO ₄)

ρ (H₂O) – частоты маятниковых и веерных колебаний молекул воды [16]

колебаний v_3 (1230, 1210, 1130, 1035 см⁻¹) и v_4 (670, 598 см⁻¹). Спектр КРС К[VO₂(SO₄)(H₂O)₂]H₂O содержит теоретический набор полос. характерный для бидетантно – координированного сульфат – иона ($v_3 - 1130$, $v_1 - 1005$, $v_4 - 676$, $n_2 - 446$ см⁻¹); колебаниям VO₂⁺ отвечают три интенсивные полосы 940 и 903, 880 см⁻¹[14, 15].

Анализ колебательных спектров NH₁[VO₂(SeO₁)(H₂O)₂]H₂O. выполненный с учетом сказанного выше, дает основание предполагать, что диоксованадиевая группа в его кристаллической структуре имеет угловую конфигурацию. В пользу этого предположения свидетельствует проявление активности колебаний VO₂⁺ и в ИК – спектре, и в спектре КРС [16]. Колебаниям концевых связей V-ОвИК-спектре NH₄[VO₂(SeO₄)(H₂O)₂]H₂O (см.рис. 1, табл. 2) отвечают две очень интенсивные полосы 930 и 890 см-1 (третья полоса не разрешена). В спектре КРС, представленном на рис.2 в сравнении со спектром NH₁[VO₂(SO₁)(H₂O)₂]H₂O, наблюдаются три хорошо разрешенные полосы 936. 907 и 894 смг1. Вместе с тем из данных спектроскопии ЯМР⁵¹V [17] следует, что локальное окружение атомов ванадия в кристаллических структурах M[VO₂(SO₁)(H₂O)₂]H₂O и M[VO₂(SeO₁)(H₂O)₂]H₂O однотипно и представляет собой сильно искаженный октаэдр. Искажение октаэдров VO₆ обусловлено неравноценностью связей ванадий - кислород, т.е. наличием концевых фрагментов V-O.

Рис.2.Спектры комбинационного рассеяния NH₄[VO₂(SeO₄)(H₂O)₂]H₂O (1) и NH₄[VO₂(SO₄)(H₂O)₂]H₂O (2)

Присутствие в структуре $NH_4[VO_2(SeO_4)(H_2O)_2]H_2O$ неравноценно – связанных молекул воды подтверждается расщеплением частоты деформационных колебаний δ (H_2O) на две компоненты (см.рис. 1, табл.2) и данными термогравиметрического анализа: на кривой ДТА (рис.3) наблюдаются две аномалии при 82 и 96°С, характеризующие процесс дегидратации как сложный.

Рис.3. Кривые ДТА и ТГ диоксоселенатованадата аммония

Однако в ходе удаления воды не образуются соединения с промежуточным ее содержанием, продукт частичной дегидратации пробы включает исходное вещество и стекло оранжево желтого цвета, кристаллизующееся при 220 - $250 \degree C с образованием NH_4VO_2SeO_4$ (см. табл. 1). Выше 250 °С диоксоселенатованадат (V) аммония разлагается с выделением SeO₃ и превращается в буровато - желтую рентгеноаморфную фазу. Экзотермическому эффекту на кривой ДТА с максимумом при 281°С соответствует потеря около половины триоксида селена. В температурном интервале 300 - 330°С происходит отщепление аммиака, сопровождающееся восстановлением ванадия и селена до четырехвалентного состояния и образованием соединения состава 2VO₂ · SeO₂ . В чистом виде это соединение было получено путем прокаливания NH₄[VO₂(SeO₄)(H₂O)₂]H₂O в атмосфере аргона с примесью аммиака при температуре 350 ± 5 °C в течение 2 ч. Образовавшиеся вследствие данной операции сине - зеленые гексагональные кристаллы нерастворимы в воде и устойчивы на воздухе до 365 °С. Дальнейшее повышение температуры вызывает распад $2VO_2 \cdot SeO_2$ на составляющие его оксиды, а при 500°С твердым продуктом термолиза является оксид ванадия (V). Межплоскостные расстояния соединения $2VO_2 \cdot SeO_2$ (табл.3) отличаются от таковых для $VO_2 \cdot SeO_2$ и $VO_2 \cdot 2SeO_2$ [18,19], что свидетельствует о его химической индивидуальности, к тому же эти соединения растворяются в воде и образуют гидраты.

Таблица 3

Межплоскостные расстояния (d, Å) и относительные интенсивности (I, %) K $[VO_2(SeO_4)(H_2O)](*)$

d, Å	1, %	d, Å	1, %	d, Å	1, %
6,0100	5,3	3,0119	5,2	2,1318	4,8
5,4850	100,0	2,9593	5,5	2,1081	3,5
4,8740	1,6	2,9030	6,1	2,0877	3,2
4,6230	1,2	2,8631	6,1	2,0272	2,8
4,2710	33,6	2,8139	2,4	2,0119	1,6
3,8568	4,9	2,7549	5,0	1,9730	2,2
3,8273	2,3	2,6641	1,6	1,8092	3,0
3,6776	5,1	2,5040	2,2	1,7953	1,2
3,6245	5,4	2,4814	16,0	1,6002	4,6
3,2387	10,0	2,4461	3,3		
3,1688	20,8	2,2411	3,3		

В отличие от $NH_4[VO_2(SeO_4)(H_2O)_2]H_2O$ гидратированный диоксо - селенатованадат (V) калия вследствие частичной дегидратации переходит в моногидрат К[VO₂(SeO₄)(H₂O)]. и происходит это без нагревания при хранении в обычных условиях. Признаки спонтанного разложения $K[VO_2(SeO_4)(H_2O)_2]H_2O$ начинают проявляться через 3 – 4 недели после синтеза. Первоначально желтый образец постепенно теряет окраску и становится почти бесцветным. Особенно быстро протекает процесс дегидратации в емкостях с большим свободным объемом или на открытой поверхности. Из горячего разбавленного раствора КVO3 в селеновой кислоте были выделены кристаллы комплекса К[VO₂(SeO₁)(H₂O)] в виде косоугольных пластинок и призм с показателями преломления: N₀=1,756 (светло – желтый), N₁₀ = 1,692 (бесцветный), N = 1,656 (бесцветный). Межплоскостные расстояния образцов К[VO_(SeO_)(H_O)]. поспонтанной дегидратацией лученных К[VO₂(SeO₁)(H₂O)₂]H₂O и кристаллизацией из раствора (данные для этого образца приведены в табл.3), полностью идентичны. Следует отметить, что соответствующее сульфатное соединение калия К[VO₂(SO₄)(H₂O)] имеет яркую оранжевую окраску и образуется в процессе длительной (несколько недель) выдержки KVO(SO₄), во влажном воздухе при 40 °C [6].

Таким образом, в результате проведенного эксперимента было синтезировано новое комплексное соединение, дополняющее изоструктурный ряд $M[VO_2(SeO_4)(H_2O)_2]H_2O$, где M – щелочной металл, для которого ранее были известны соединения калия, рубидия и цезия [9,10]. В ряду $M[VO_2(SO_4)(H_2O)_2]H_2O$ соединение цезия отсутствует [14].

ЛИТЕРАТУРА

1. Глазырин М.П., Красильников В.Н., Ивакин А.А. // Журн. неорган. химии. 1980. Т.25. №12. С. 3368.

2. Ивакин А.А., Яценко А.П., Глазырин М.П. и др. // Журн. прикл. химии. 1982. Т. 55. №2. С.344.

3. Красильников В.Н. Дис. канд. хим. наук. Свердловск: Институт химии УНЦ АН СССР, 1981. 168 с.

4. Berzelius J.J. //Annal. Phys. Chem. 1831. B.22.S.1.

5. Richter K. – L., Mattes R. //Inorg. Chem. 1991. V. 30, №23. P.4367.

6. Красильников В.Н. // Журн. неорган. химии. 1984. Т.29, №5. С. 1183.

7. Красильников В.Н. // Журн. неорган. химии. 1985. Т.30, №10. С. 2633.

8. Красильников В.Н. // Журн. неорган. химии. 1989. Т.34, №7. С. 1748.

9. Красильников В.Н., Ивакин А.А. // Журн. неорган. химии. 1984. Т 29, №11. С. 2815.

10. Красильников В.Н., Глазырин М.П., Ивакин А.А. // Журн. неорган. химии. 1987. Т.32, №7. С.1761.

11. Ивакин А.А., Чуфарова И.Г. // Журн. неорган. химии. 1984. Т.29, №5. С. 1305.

12. Ивакин А.А., Чуфарова И.Г., Яценко А.П. и др. // Журн. неорган. химии. 1983. Т.28, №4. С. 919.

13. Красильников В.Н., Галактионов А.Д. // Журн. неорган. химии. 1997. Т.42, №6. С. 915.

14. Красильников В.Н., Галактионов А.Д., Слепухин В.К. //Тез. докл. Всерос. Конф. по химии твердого тела и применению новых материалов. Екатеринбург, 14-18 октября 1996. Т.2. С.64.

15. Красильников В.Н., Слепухин В.К. //Тез. докл. XIII Уральской конф. по спектроскопии. Заречный, 24 апреля 1997. С.54.

16. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Comounds, Wiley: N.Y., 1978.

17. Lapina O.B., Mastichin V.M., Shubin A.A., Krasilnikov V.N., Zamaraev K.I. // Progress in NMR Spectroscopy. V.24. P.457.

18. Tronble J.C., Enjalbert R., Geizes A., Galy J.// C.R. Acad. Sc. Paris. S.2.1983. V.297, №8. P.667.

19. Rocha A.L., Baran E.J. // Z. anorg. allg. Chem. 1988. B. 564, H.2. S.141.