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Abstract

We consider robot self-awareness from the point of view of temporal
relation based data mining. We consider the problem of finding regular-
ities among effects of robot’s actions and changes of the environment.
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The ability to anticipate the actions of others or some important events in
the environment is something we take more or less for granted. We often do
not appreciate the complexity of this ability. The robot needs some system
of finding regularities (see e.g. [1] – [4]) to construct their own anticipation
system. Note that the representation of knowledge of the surrounding world
plays an important role in mobile robot navigation tasks (see e.g. [5] – [7]).
Finding optimal solutions for such tasks usually requires to solve some hard
problem (see e.g. [8] – [16]). Robot self-awareness and anticipation of some
events gives the robot significant additional capabilities to solve such tasks (see
e.g. [17] – [22]). In this paper, we consider the problem of finding regularities
among effects of robot’s actions and changes of the environment

We use autonomous mobile robot Kuzma-II as main testbed (see e.g. [20])
for our experiments. The basic robot control system developed in Java. The
system is designed to work with devices. Intelligent functions assigned to
the advanced robot control system. This system developed using the C#
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programming language on the .NET 2.0 framework. Kuzma-II uses a visual
navigation system. Using a wireless connection our robots have access to
resources of a cluster. We use heterogeneous cluster.

Using of fluents allows us to establish a correspondence between sequences
of images, actions of the robot, and changes of the environment. It is obvious
that some part of obtained correspondence describes random dependences.
Therefore, it needs to be further processed. Of course, this processing can be
made by human. However, this is too expensive way. A natural approach to
the detection of dependences between sequences of images, actions of the robot
and changes of the environment is to find regularities in the correspondence.

Note that we can use distance functions for sequences of images. Therefore,
to find regularities we use satellite models. There are two satellite models (see
e.g. [23]). One called prefix model and the other consensus model.

A prefix model of a satellite is a string w ∈ Σ∗ that approximately matches a
train of wagons. A wagon of w is a substring u in string x such that δ(w, u) ≤ e.
A train of a satellite model w is collection of wagons u1, u2, . . . , up ordered by
their starting positions in x and satisfying the following properties.

1. p ≥ min repeat, where min repeat is a fixed parameter that indicates
the minimum number of elements a repetitive region must contain.

2. leftui+1
− leftui

∈ JUMP , where leftu is the position of the left-end of
wagon u in x and

JUMP = {y | y ∈ ∪x∈[1,max jump]x × [min range,max range]},

with the three parameters min range,max range and max jump fixed.
A prefix model w is said to be valid if there is at least one train of w in the

string x. Similarly, a train, when viewed simply as a sequence of substrings of
x, is valid if it is the train for some model w.

Consensus model is a prefix model which further satisfies the following
property.

3. leftui+1
− rightui

∈ GAP , where rightu is the position of the right-end
of wagon u, and

GAP = {y | y ∈ ∪x∈[0,max jump−1]x × [min range,max range]}.

The distance function in the consensus model is the consensus function,
which finds a consensus string of wagons, i.e. string w such that the distance
between the string w and each string in {u1, u2, . . . , up} is at most e. Another
way to define a consensus string is to use the consensus error. The consen-
sus error of a string w with respect to a given set {u1, u2, . . . , up} is the sum
of the distances between w and all the strings in {u1, u2, . . . , up}. Parameter
max jump allows us to deal with very badly conserved elements inside a satel-
lite (by actually not counting them). Consensus error allows us to deal with
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relatively badly conserved wagons inside a satellite (and counting them) while
we require that the satellite be relatively well conserved globally.

Let a consensus error model is a string w ∈ Σ∗ that approximately matches
with consensus error a train of wagons, i.e.

∑p
i=1 δ(w, ui) ≤ e.

Let us consider the following problem:

The satellite problem for consensus error (SPCE):

Instance: Parameters min repeat, min range, max range, max jump,
and e, a distance function δ, a string x.

Task: Find a consensus error model w that is valid for x.

Although SPCE is NP-hard [2], this problem describes the model which
is the most general and interesting from the practical point of view for lo-
calization and extraction of regularities. In view of practical significance of
this model, researchers have extensively studied algorithms for this model. In
particular, under various constraints for this model proposed various combi-
natorial algorithms and ideas in [24, 25]. Using such algorithms some labeled
data can be obtained. After this learning from unlabeled data can be used. In
our framework used the following two genetic algorithms: algorithm for direct
prediction of the location of regularities in a data sequence (DPL); algorithm
for selection of combinatorial solvers. Co-training used to improve quality of
both algorithms. Also co-training used to improve quality of the algorithm for
direct prediction of values of parameters min repeat, min range, max range,
max jump, and e (DPV).

Note that we can use parallel run of combinatorial solvers. However, the
algorithm for selection of combinatorial solvers allows us significantly reduce
the number of computational nodes.

Algorithms DPL and DPV allow us significantly reduce processing time of
data sequence. It should be noted that the performance of these algorithms
considerably depends from the number of co-training steps and the length of
data sequence (see Table 1). Dependencies of the quality of prediction from
the number of co-training steps are shown in Table 2.

103 105 107

brute force 5.2 h 19.7 h 63.7 h
DPL (103 steps) 1.3 h 3.1 h 7.2 h
DPL+DPV (103 steps) 51 min 1.3 h 3.1 h
DPL (105 steps) 1.1 h 2.6 h 5.4 h
DPL+DPV (105 steps) 11 min 28 min 57 min

Table 1: The dependence from the number of co-training steps and the length
of data sequence.
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102 103 105 107 108

DPL 44 % 68 % 93 % 94 % 94 %
DPV 36 % 57 % 82 % 87 % 87 %

Table 2: The quality of prediction for DPL and DPV.
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