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Abstract

In this paper we consider an approach to solve the problem of se-
lection of a minimal set of landmarks. Our approach is based on con-
structing intelligent algorithms to solve logical models for the problem.
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Intelligent algorithms for visual navigation is extensively used in contem-
porary robotics and other vision systems (see e.g. [1, 2, 3, 4, 5, 6, 7]). Using
systems of visual landmarks has been widely applied for mobile robot naviga-
tion (see e.g. [8, 9, 10]). In this paper we consider the problem of selection of
a minimal set of visual landmarks SMSL [10].

In papers [11, 12, 13, 14, 15] the authors considered some algorithms to
solve different logical models (see also [16, 17, 18, 19, 20, 21]). In this paper
we consider reductions from SMSL-D (see [10]) to SAT and 3SAT.

Let
ϕ = ∧1≤t≤d ∨1≤i≤k x[t, i],
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ψ = ∧1≤t≤d ∧1≤i[1]<i[2]≤k (¬x[t, i] ∨ ¬x[t, i[2]),

τ [j, l] = ∨1≤t≤d,1≤i≤k,Fj [l]∈L[i,j ]x[t, i],

τ = ∧1≤j≤n ∧1≤l≤mj ,Fj [l]∈∪Li∈LLi
τ [j, l],

ξ = ϕ ∧ ψ ∧ τ.
Theorem. Given a set of landmarks

L = {L1, L2, . . . , Lk}

and a positive integer d. There is a set S ⊆ L such that ∪Li∈SLi = ∪Li∈LLi

and |S| ≤ d if and only if ξ is satisfiable.
Proof. Suppose that there is a set S ⊆ L such that ∪Li∈SLi = ∪Li∈LLi

and |S| ≤ d. Without loss of generality we can assume that |S| = d. Let

S = {S1, S2, . . . , Sd}.

Since |S| = d, we can suppose that x[t, i] = 1 if and only if St = Li. It is
easy to see that ϕ = 1 if and only if, for any t, there is at least one value of
i such that x[t, i] = 1. Respectively, ψ = 1 if and only if, for any t, there is
no more than one value of i such that x[t, i] = 1. Therefore, by definition of
x[t, i], ϕ∧ψ = 1. In view of ∪Li∈SLi = ∪Li∈LLi, it is easy to check that τ = 1.
So, ξ = 1.

Suppose now that ξ = 1. Since ϕ ∧ ψ = 1 if and only if, for any t, there
is only one value of i such that x[t, i] = 1, we can consider values of x[t, i] as
a definition of S. In particular, Li ∈ S if and only if there exist t such that
x[t, i] = 1. Note that τ = 1 if and only if, for any j ∈ {1, 2, . . . , n} and l ∈
{1, 2, . . . , mj} such that Fj [l] ∈ ∪Li∈LLi, there exist t and i such that x[t, i] = 1
where Fj[l] ∈ L[i, j]. Thus, by definition of S, for any j ∈ {1, 2, . . . , n} and
l ∈ {1, 2, . . . , mj} such that Fj [l] ∈ ∪Li∈LLi, there exist i such that Li ∈ S and
Fj [l] ∈ L[i, j]. Therefore, ∪Li∈SLi = F .

It is easy to check that ξ is a CNF. So, ξ gives us an explicit reduction
from SMSL-D to SAT. By direct verification we can check that

α ⇔ (α ∨ β1 ∨ β2) ∧
(α ∨ ¬β1 ∨ β2) ∧
(α ∨ β1 ∨ ¬β2) ∧
(α ∨ ¬β1 ∨ ¬β2), (1)

∨l
j=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧

(∧l−4
i=1(¬βi ∨ αi+2 ∨ βi+1)) ∧

(¬βl−3 ∨ αl−1 ∨ αl), (2)

α1 ∨ α2 ⇔ (α1 ∨ α2 ∨ β) ∧
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(α1 ∨ α2 ∨ ¬β), (3)

∨4
j=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧

(¬β1 ∨ α3 ∨ α4) (4)

where l > 4. Using relations (1) – (4) we can easily obtain an explicit trans-
formation ξ into ζ such that ξ ⇔ ζ and ζ is a 3-CNF. It is clear that ζ gives
us an explicit reduction from SMSL-D to 3SAT.

We obtain explicit reductions from SMSL-D to SAT and 3SAT. We use
algorithms fgrasp and posit from [22]. Also, we design our own genetic algo-
rithm for SAT which based on algorithms from [22].

Consider a boolean function

g(x1, x2, . . . , xn) = ∧m
i=1Ci,

where m ≥ 1, and each of the Ci is the disjunction of one or more literals. Let
|Ci| be a number of literals in Ci. Let occ(xi, g) be a number of occurrences of
xi in g. Respectively, let occ(¬xi, g) be a number of occurrences of xi in g. For
example, if

g = (x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ x5),

then occ(x1, g) = 2, occ(¬x1, g) = 1.
We consider a number of natural principles that define importance of a

variable xi for satisfiability of boolean function g. These principles suggest us
correct values of variables.

1. If occ(xi, g) ≥ 0 and occ(¬xi, g) = 0, then xi = 1.

2. If occ(xi, g) = 0 and occ(¬xi, g) ≥ 0, then xi = 0.

3. If xi = Cj for some j, then xi = 1.

4. If

min
occ(xi,Cj)>0

|Cj | ≤ min
occ(¬xi,Cj)>0

|Cj|,

then xi = 1.

5. Given positive integers

p1, p2, . . . , pm, q1, q2, . . . , qm

and a set of rational numbers

{αi,u, βi,v | 1 ≤ i ≤ m, 1 ≤ u ≤ pi, 1 ≤ v ≤ qi}.
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If ∑

1≤j≤m,1≤u≤pj,|Cj |=u

αj,uocc(xi, Cj) ≥
∑

1≤j≤m,1≤v≤qj ,|Cj |=v

βj,vocc(¬xi, Cj),

then xi = 1.

Based on these principles, we can consider the following five types of com-
mands: P1, P2, . . . , P5. Also we consider the following three commands for run
algorithms: Try fgrasp, Try posit, and Try ga, where Try ga runs a simple
genetic algorithm.

Denote by R the set of commands of these eight types. Arbitrary element
of R∗ it is possible to consider as a program for finding values of variables of
a boolean function. We assume that such programs are executed on a cluster.

Execution of each of commands of type Pi reduces the number of variables
of a boolean function by one. Execution of each of commands Try fgrasp,
Try posit, and Try ga consists in the run of corresponding algorithm for current
boolean function on a separate set of calculation nodes and the transition to
the next command.

Algorithms fgrasp and posit we run only on one calculation node. Ge-
netic algorithms can be used in parallel execution. We use auxiliary genetic
algorithm which determine the number of calculation nodes.

Initially, we selected a random subset of R∗. We use a genetic algorithm
to select a program from the current subset of R∗ and a genetic algorithm
for evolving the current subset of R∗. The evolution of the current subset of
R∗ implemented on a separate set of calculation nodes. For every subsequent
boolean functions it is used the current subset of R∗ which is obtained by
taking into account the results of previous runs.

We use heterogeneous cluster based on three clusters (Cluster USU, Linux,
8 calculation nodes; umt, Linux, 256 calculation nodes; um64, Linux, 124
calculation nodes) [23].

Algorithms fgrasp and posit used only for 3SAT. For SAT used simple ge-
netic algorithm (SGA), and our algorithm (OA). Selected experimental results
are given in Tables 1, 2.
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time fgrasp posit SGA OA

average 24.1 min 24.7 min 37.8 min 19.7 min
maximum 14.7 h 15.6 h 26.4 h 7.2 h
best 4.6 min 4.1 min 43 sec 52 sec

Table 1: Experimental results for reduction to 3SAT.

time SGA OA

average 28.8 min 23.7 min
maximum 22.4 h 20.6 h
best 37 sec 43 sec

Table 2: Experimental results for reduction to SAT.
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