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Abstract

We consider a real-world experiments setup for investigations of the
problem of visual landmarks selection for wheeled and tracked robots
navigation. In particular, we consider visual landmarks selection in case
of one-dimensional panorama.
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The representation of knowledge of the surrounding world plays an impor-
tant role in mobile robot navigation tasks (see e.g. [1, 2, 3]). Quality of visual
navigation methods which use landmarks depends critically on the method
of selection of landmarks. In [4], the authors have considered an approach
utilizing reinforcement learning to learn a strategy that allows a robot to suc-
ceed in a goal-directed navigation task. In particular, the robot is asked to
drive to certain location from any position within the environment. The robot
learns to select an action for every given observation of the world. In [4],
the authors have considered a world with different distributions of landmarks,
ranging from a small to a very high number of landmarks, and also one world
with landmarks only at intersection points (see Figure 3 in [4]). In [4], it is
shown experimentally that learning success critically depends on the number
of landmarksthe more there are, the longer learning times are observed. In
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Figure 1: Kuzma-I.3 (left), Kuzma-II.2, Kuzma-II.3 (right).

particular, with few landmarks the learning performance is extremely good. It
gets obvious that landmarks only at intersections are sufficient to succeed in
the task. On the other hand, for the huge number of landmarks in the fourth
world, a stable success rate of 100% has not been reached yet even after 50,000
learning episodes. In [5], the authors have noted that due to performance lim-
itations, many real-time navigation systems are restricted to the use of only
a very small number (usually 4-10) of landmarks. Such limitation arises from
the large overhead of detecting and tracking these landmarks along the im-
age sequence. In particular, in [6], for example, the authors have presented
a navigation system where only four landmarks are simultaneously tracked.
In this paper we consider a real-world experiments setup for investigations
of the problem of visual landmarks selection for wheeled and tracked robots
navigation.

We use different modifications of wheeled and tracked robots (see Figure
1). Design of Kuzma-I.3 based on the well-known RC cars. From RC-CAR
AT-10ES Thunder Tiger we use only the four wheel chassis, the high torque
DC-MOTOR and a steering servo. The robot is equipped with one rigidly fixed
USB web camera. Design of Kuzma-II.2 based on the well-known Johnny 5
Robot. The robot is equipped with Lynxmotion robotic arm with wrist rotate.
One USB web camera rigidly fixed on robotic arm. Also, the robot uses a
camera of onboard laptop. Kuzma-II.3 is equipped with a 2 DOF robotic
camera. Also, the robot uses a camera of onboard laptop.

We consider different types of systems of landmarks. In particular, follow-
ing [7] (see also [8, 9, 10]), the location signature was made up of zone of mono-
tonically increasing or decreasing intensity in a grey-levelled one-dimensional
360◦ panorama. In contrast to [7, 9], where used a camera pointing up at the
bottom of spherical [7] or conical [9] mirror, to obtain a 360◦ panorama, we
use robotic camera of Kuzma-II.3. A 360◦ panorama constructed from three
180◦ panoramas. We consider any point of color change in a grey-levelled
one-dimensional 360◦ panorama as landmark. Respectively, we suppose that
F1, F2, . . . , Fn is set of features where n = 480, Fi = {0, 1, . . . , 255}. In this
case we have a set of landmarks L = {L1, L2, . . . , Lk} where k ≤ 7680.

Following [11], we consider a one-dimensional array of RGB (red, green,
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Figure 2: In view of errors of the robot motion, different snapshots represent
different sectors of the circular diagram. To demonstrate the accuracy of the
robot motion, colored skittles are placed in the vertices of a regular hendecagon.

blue) values extracted along a circle in the two-dimensional colour image as
the location signature. Also we consider a one-dimensional array of HSL (hue,
saturation, luminance) values (see e.g. [12]). Besides, we consider intensity,
color, and orientation as visual cues. In particular, we use two opponent colors
red/green and blue/yellow [13] (see also [14, 15, 16]).

In addition, instead of using a 360◦ unidimensional vision field, we use a
sequence of eleven snapshots. In view of errors of the robot motion, different
snapshots represent different sectors of the circular diagram (see e.g. Figure
2).

Also, we use colored skittles in different indoor environments as a system of
artificial landmarks (see e.g. Figure 3). For recognition of colored skittles, we
use sequential processing by neural network (left images) and then threshold
transformation (right images) to detect colored regions.

Each colored region we can consider as a sequence of vertical segments with
coordinates (y[1, 1], y[1, 2]), (y[2, 1], y[2, 2]), . . . , (y[m, 1], y[m, 2]). Also each col-
ored region we can consider as a sequence of horizontal segments with coordi-
nates (x[1, 1], x[1, 2]), (x[2, 1], x[2, 2]), . . . , (x[n, 1], x[n, 2]). Each colored region
is characterized by vector

w[1], . . . , w[80], h[1], . . . , h[40], δl[1], . . . , δl[10], δr[1], . . . , δr[10]

where
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Figure 3: Colored skittles in different indoor environments used as a system
of artificial landmarks.
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, 1 ≤ i ≤ m− l,

δl[k] ∈ {|x[i, 1]− x[j, 1]| : 1 ≤ i < j ≤ n}, 1 ≤ k ≤ 10,

|δl[1]| > |δl[2]| > . . . > |δl[10]|,

x ∈ {|x[i, 1]− x[j, 1]| : 1 ≤ i < j ≤ n}\{δl[1], δl[2], . . . , δl[10]} ⇒

x < |δl[10]|, δr[k] ∈ {|x[i, 2]− x[j, 2]| : 1 ≤ i < j ≤ n},

|δr[1]| > |δr[2]| > . . . > |δr[10]|,

x ∈ {|x[i, 2]− x[j, 2]| : 1 ≤ i < j ≤ n}\{δr[1], δr[2], . . . , δr[10]} ⇒ x < |δr[10]|.

Such vectors are used as landmarks. They are also used to compare detected
regions and landmarks.
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[10] R. Möller, Insect visual homing strategies in a robot with analog process-
ing, Biological Cybernetics, 83 (2000), 231-243.
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[16] N. Ouerhani and H. Hügli, Real-time visual attention on a massively
parallel SIMD architecture, International Journal of Real-Time Imaging,
9 (2003), 189-196.

Received: May, 2012


