Динамический магнитный отклик взаимодействующих феррочастиц в магнитной жидкости

Батрудинов Т.М.¹

Научный руководитель: Елфимова E.A.², доктор физико-математических наук, доцент, доцент кафедры теоретической и математической физики Институт естественных наук и математики, Уральский федеральный университет ¹tim.batrudinov@gmail.com; ² Ekaterina.Elfimova@urfu.ru

В предлагаемой работе с помощью аналитических методов изучается динамический отклик феррожидкости, помещенной в постоянное и слабое линейно поляризованное переменное магнитные поля. Феррожидкость моделируется системой твердых однодоменных сфер, взвешенных в вытянутом цилиндрическом сосуде, большая ось которого совпадает с направлением постоянного и переменного магнитных полей. Изучение динамических свойств опирается на уравнение Фоккера-Планка. Для учета межчастичных корреляций в моделируемой системе в уравнение Фоккера-Планка вводится дополнительное слагаемое, которое было предложено в работе [1]. Данное слагаемое позволяет учесть дипольные взаимодействия на уровне модифицированной теории среднего поля первого порядка.

Уравнение Фоккера-Планка, описывающее межчастичные взаимодействия и одновременное влияние постоянного и малого магнитных полей, решено аналитически. Решением уравнения является ориентационная плотность вероятности случайно выбранной частицы. Полученная ориентационная плотность вероятности использовалась для определения динамической восприимчивости. В работе исследован спектр динамической восприимчивости в зависимости от напряженности магнитного поля. Показано, что увеличение напряженности постоянного магнитного поля приводит к уменьшению значения максимума мнимой части. Также наблюдается сдвиг максимума мнимой части в область больших частот, вследствие чего можно сделать вывод, что время релаксации системы сокращается. В области малых частот действительная часть восприимчивости убывает с ростом напряженности постоянного магнитного поля.

Полученные результаты были подтверждены данными компьютерного моделирования (Dr Philip J. Camp, University of Edinburgh).

Литература

1. Ivanov A.O., Zverev V.S., Kantorovich S.S., Soft Matter, 15 (2016) 3507–3513.