УДК 620.22

К. И. Петрова, М. А. Попова, Р. И. Петров

Ур
ФУ имени первого Президента России Б. Н. Ельцина, г. Екатеринбур
гk.i.petrova@urfu.ru

Научный руководитель – проф., д-р техн. наук А. А. Попов

ВЛИЯНИЕ ЛЕГИРОВАНИЯ И ПАРАМЕТРОВ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА ВЫДЕЛЕНИЕ ИНТЕРМЕТАЛЛИДНЫХ ФАЗ В ЖАРОПРОЧНЫХ ТИТАНОВЫХ СПЛАВАХ

КИЦАТОННА

В работе изучена микроструктура псевдо- α и (a + β) Ti-Al-Sn-Zr-Мо-Si сплавов, с различным содержанием алюминия, циркония и олова. Показано, что старение при 600...750 °C приводит к образованию силицидных частиц. В случае выделения упорядоченной α_2 -фазы по механизму зарождения и роста (600...750 °C), пластичность и ударная вязкость снижаются. Жаропрочность сплавов также снижается из-за обеднения твердого раствора по кремнию в процессе формирования силицидных частиц.

Ключевые слова: жаропрочный титановый сплав, легирование, алюминиды титана

ABSTRACT

The microstructure of near-alpha and $(\alpha+\beta)$ Ti–Al–Sn–Zr–Mo–Si alloys containing various amount of aluminum, zirconium and tin was studied. It was shown that aging at 600...750 °C leads to silicide particles precipitation. In case, when ordered α_2 -phase was formed by the nucleation and growth mechanism (600...750 °C), ductility and toughness were reduced. The heat resistance properties were also decreased due to the depletion of the solid solution by silicon during silicide particles formation.

Keywords: high-temperature titanium alloy, alloying, titanium aluminides

Жаропрочные титановые сплавы, как известно, сочетают в себе высокую удельную прочность, высокую пластичность и достаточное сопротивление ползучести при рабочих температурах. Сочетание этих функций обеспечивает их высокую надежность в эксплуатации изделий в авиационной и космической технике.

В сплавах данного класса помимо основных α и β фаз могут выделяться различные силицидные частицы, а так же частицы Ti_3Al в α -фазе [1; 2]. Все эти выделения могут существенно влиять на свойства сплавов. Например, выделение силицидов типа $(Ti, Zr)_5Si_3$ на межфазных α/β -границах уменьшает технологическую пластичность сплавов, а

[©] Петрова К. И., Попова М. А., Петров Р. И., 2015

формирование частиц (Ti, Zr)₆Si₃ в теле α -фазы снижает характеристики жаропрочности [3]. В тех случаях, когда процессы упорядочения происходят в α -фазе и образуются частицы Ti₃Al (α ₂-фаза), характеристики жаропрочности увеличиваются, но пластические свойства значительно ухудшаются. Механизмы формирования α ₂-фазы могут в значительной степени определять формирующийся комплекс свойств [4].

Таким образом, цель данного исследования заключается в изучении механизмов и видов образующихся интерметаллидных фаз в зависимости от температурно-временных параметров термической обработки. В качестве объекта исследования были использованы экспериментальные Ti-Al-Sn-Zr-Mo-Si сплавы, содержащие до 12,5% ат. алюминия.

После термической обработки в β -области в сплавах наблюдалась пластинчатая ($\alpha + \beta$)-структура (рис. 1). Было установлено, что состав пластинок α - фазы является достаточно однородным (табл. 1).

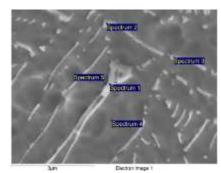


Рис. 1. Структура сплава после ТО

Таблица 1.

химический состав сплава											
Область съемки	Содержание основных элементов сплава, вес. %										
	Al	Si	Ti	Zr	Nb	Mo	Sn				
Spectrum 1	2.1	0.1	87.1	3.2	2.2	3.2	2.1				
Spectrum 2	3.3	0.1	88.8	3.2	1.1	1.2	2.3				
Spectrum 3	3.8	_	87.6	3.2	0.8	1.1	3.5				
Spectrum 4	3.7	0.1	90.8	3	0.8	0.1	1.5				
Spectrum 5	4.5	0.2	87.8	3.6	1.2	0.5	2.2				

Пластинчатая ($\alpha + \beta$)-структура также наблюдается в сплавах после старения. В случае старения при 500 °C существенных различий в структуре сплава обнаружено не было. В соответствии с рентгеноструктурным анализом в процессе старения сплава, предварительно обработанного в однофазной β -области, наблюдается постоянное уменьшение параметра решетки β -фазы (от 0,3249 до 0,3237–0,3239 нм в зависимости от температуры старения) и увеличение коэффициента с/а в α -фазе. Это позволяет считать, что распад β -твердого раствора происходит не путем зарождения и роста частиц различных фаз, а за счет увеличения объемной доли первичной α -фазы и ее обогащения алюминием, и, возможно, цирконием и оловом, которое сопровождается увеличением с/а α -твердого раствора.

Увеличение соотношения с/а способствует затруднению прохождения пластической деформации в пирамидальной и призматических плоскостях и увеличивает долю базисного скольжения.

При увеличении температуры старения сплавов до 650 $^{\circ}$ C, его тонкая структура изменяется. Происходит выделение силицидных частиц на α/β -границах со стороны β -фазы. Данные частицы имеют структурную формулу

(Ti, Zr) $_5$ Si $_3$, и их количество увеличивается с увеличением температуры и продолжительности старения. Выделение сопровождается глобуляризацией β -пластин, что обусловлено ростом частиц первичной α -фазы при старении. В результате, первоначальные β -прослойки разбиваются на отдельные частицы.

Микрорентгеноспектральный анализ показал, что выделяющиеся в сплаве частицы значительно обогащены цирконием (26–30 масс. %) и кремнием (6,6–7,6 масс. %), по сравнению с микрообластями α -матрицы и β -пластин, которые позволили нам классифицировать эти частицы как силициды, содержащие повышенное количество циркония (табл. 2).

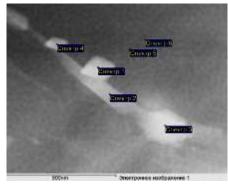


Рис. 2. Структура исследуемого сплава

Таблица 2. Химический состав исследуемых областей

Место	Содержание основных элементов сплава,										
съемки	Bec. %										
	Ti	Al	Zr	Si	Mo	Sn	Nb				
Область 1	53,8	3,9	30,1	7,6	0,2	3,6	0,8				
Область 2	76,6	5,1	3,5	0,02	7,9	3,8	3,1				
Область 3	69,5	3,7	4,3	0,00	14,6	2,8	5,1				
Область 4	56,8	4,0	26,1	6,6	1,5	3,1	1,9				
Область 5	83,5	7,55	3,8	0,15	0,6	3,2	1,2				
Область 6	82,2	7,6	3,6	0,5	1,3	3,4	1,4				

На рис. 3 показаны дифрактограммы исследуемых сплавов с различным составом после старения при 750 °C в течение 25 часов. На дифрактограммах в области малых углов наблюдаются отражения, которые могут соответствовать отражениям от силицидных частиц S_2 (20 = 29,5°) и S_3 (20 = 27,6 ° и 30,8 °). При этом в сплаве 1 наблюдается пик только от частиц типа S_2 , а в случае сплава 2 — пики от обоих типов силицидов.

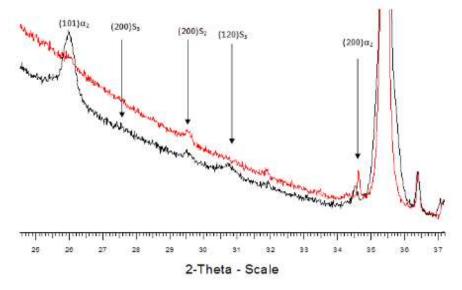


Рис. 3. Дифрактограмма исследуемых сплавов

В то же время на дифрактограмме сплава 2 присутствуют очень интенсивные пики от α_2 -фазы ($2\theta = 26^{\circ}$ и $34,6^{\circ}$). У сплава 1 интенсивность соответствующих пиков значительно ниже. Данное различие, по всей видимости, обусловлено различным содержанием алюминия в сплавах.

Таким образом, в работе показано, что распад метастабильных фаз в сплавах идет с образованием частиц интерметаллидных фаз: на межфазной α/β -границе раздела при температуре старения выше 600 °C наблюдается зарождение и последующий рост со стороны β -фазы силицидов S_1 ; повышение температуры старения активизирует их рост, а также частично трансформацию некоторой доли из них в силициды типа S_2 и S_3 в зависимости от соотношения легирующих элементов в сплавах. Кроме того, активное образование силицидных частиц приводит к обеднению твердого раствора по алюминию, что затрудняет процесс образования упорядоченной α_2 -фазы.

Работа выполнена при финансовой поддержке постановления № 211 Правительства Российской Федерации, контракт № 02.A03.21.0006 и в рамках государственного задания Министерства образования и науки $P\Phi$, проект № 2329.

ЛИТЕРАТУРА

- 1. Drozdova N. A., Popov A. A., Trubochkin A. V., Elkina O. A. The study of the combined precipitation of titanium aluminides and suicides in a two-phase titanium alloy, Physics of Metals and Metallography, Vol. 87, Issue 5, (1999), 415–420.
- 2. Madsen H. Ghonem, Separating the effect of Ti3Al and silicide precipitates on the tensile and crack growth behavior at room temperature and 593°C in near-alpha titanium alloy, J. of materials engineering and performance, Vol. 4(3) (1995), 301–307.
- 3. Popov A. A., Drozdova N. A. Principles of alloying titanium-based two-phase high-temperature alloys, Physics of Metals and Metallography, Vol. 84, Issue 4 (1997), 407–412.
- 4. Popov A. A., Rossina N. G., Popova M. A. The effect of alloying on the ordering processes in near-alpha titanium alloys, Materials Science and Engineering: A, 564, (2013), 284–287.