Н. В. Косова, О. А. Подгорнова

Институт химии твердого тела и механохимии СО РАН, 630128 Новосибирск, Россия, Кутателадзе, 18 E-mail: kosova@solid.nsc.ru

Супервалентное допирование для улучшения электрохимических характеристик LiFePO₄*

Ортофосфаты LiFe_{0,9}M_{0,1}PO₄ со структурой оливина, допированные ванадием и титаном, были получены с помощью механохимически стимулированного твердофазного синтеза с использованием высокоэнергетической планетарной мельницы AFO-2 и последующего отжига при 750 °C. Показано, что ионы V и Ti не полностью замещают ионы Fe²⁺ в структуре LiFePO₄. Оставшаяся часть этих ионов участвует в образовании второй фазы с насиконоподобной структурой: моноклинной Li₃V₂(PO₄)₃ (пространственная группа $P2_1/n$) и ромбоэдрической LiTi₂(PO₄)₃ (пространственная группа R-3c). Согласно ПЭМ, средний размер частиц нанокомпозитов около 100–300 нм. ЭДС микроанализ показал, что мелкие частицы вторичных фаз сегрегированы на поверхности более крупных частиц LiFePO₄. На зарядно-разрядных кривых LiFe_{0,9}M_{0,1}PO₄ присутствуют плато, соответствующие LiFePO₄ и второй фазе. Допирование ванадием повышает устойчивость циклирования LiFePO₄ и улучшает его циклируемость при высоких скоростях в большей степени, чем в случае допирования титаном.

Ключевые слова: LiFePO₄; супервалентное допирование; механохимическая активация; электрохимическое циклирование.

*Данная работа выполнена при частичной финансовой поддержке РФФИ (грант № 14-03-01082).
© Косова Н. В., Подгорнова О. А., 2015

Введение

Много попыток было предпринято, чтобы превратить плохо проводящие соединения в привлекательные электродные материалы, включая получение материала в наноразмерном состоянии, создание наноуглеродного покрытия и допирование ионами металлов [1–3]. Это позволило железофосфату лития LiFePO₄ со структурой оливина, обладающему низкой электронной проводимостью и медленной диффузией лития [3, 4], стать перспективным катодным материалом с необходимыми электрохимическими свойствами и способствовало его внедрению в промышленность. Было показано, что диффузия ионов Li в LiFePO₄ происходит преимущественно вдоль каналов [1] по криволинейной траектории. Наиболее предпочтительными собственными дефектами в LiFePO, являются катионные антиструктурные дефекты, в которых ионы Li и Fe обмениваются местами. В соответствии с ab initio расчетами по допированию LiFePO₄ низкие значения энергии характерны только для двухвалентных допантов в позициях Fe, в то время как замещение супервалентными катионами энергетически невыгодно [5]. Между тем экспериментально было показано, что супервалентное допирование LiFePO, в позиции Li увеличивает его электронную проводимость в ~10⁸ раз и приводит к превосходным электрохимическим характеристикам [3]. В дальнейшем эти результаты были объяснены образованием проводящих примесных фаз. Исследованиям по повышению стабильности циклирования LiFePO₄ и его циклированию при высоких скоростях до сих пор придается большое значение.

Ванадий и титан являются чрезвычайно привлекательными допантами для LiFePO₄, поскольку они легко образуют соответствующие литий-металлофосфаты. Несмотря на то, что было опубликовано несколько работ по допированию LiFePO₄ ванадием [6-12] и титаном [13-16], существует много разногласий по поводу образования твердых растворов LiFe $_{1-\nu}$ V $_{\nu}$ PO $_{4}$ и LiFe $_{1-\nu}$ Ті РО. Некоторые авторы утверждают, что V³⁺ замещает Fe²⁺ в позициях Fe в пределах области растворимости 0 < *x* < 0,08 [9] или при *x* < 0,1 [7]. Согласно [7], предел растворимости в твердой фазе зависит от метода синтеза и температуры. Когда температура синтеза увеличивается до 700 °С, наблюдается понижение растворимости V и образование второй фазы -Li₃V₂(PO₄)₃. Аналогично, когда производится допирование LiFePO₄ ионами Ті, то при высоком уровне допирования (x > 0,05) образуются примеси, такие как TiP_2O_7 и $LiTi_2(PO_4)_2$ [14]. Сообщается, что образцы LiFePO,, допированные V и Ті, показывают отличную обратимую емкость и хорошую циклируемость при высоких скоростях. Тем не менее нет общей точки зрения относительно механизма этого улучшения. В большинстве предыдущих исследований катионное замещение в позициях Fe (позиция M2) в LiFePO, как правило, приводит к более высоким ионной подвижности и коэффициенту диффузии Li⁺ в связи с увеличением объема элементарной ячейки и вероятного ослабления взаимодействий Li-O. Последнее снижает сопротивление при переносе заряда и тем самым улучшает обратимость процесса литирования. Только в нескольких работах показано, что возможно катионное замещение в позициях Li (позиции M1), в результате чего происходит образование вакансий Li, что увеличивает емкость LiFePO₄ [11]. В связи с этим необходима разработка методов синтеза LiFePO₄ с подходящим катионным допированием наряду с уменьшением размера частиц и созданием оптимального углеродного покрытия.

Целью данной работы было изучение V- и Ті-допированого LiFePO₄, синтезированного механохимически стимулированным карботермическим восстановлением.

Экспериментальная часть

LiFe_{0,9}V_{0,1}PO₄ и LiFe_{0,9}Ti_{0,1}PO₄, далее обозначенные как LFVP и LFTP, были синтезированы с использованием в качестве исходных реагентов Li₂CO₃, Fe₂O₃, V₂O₅, TiO₂ и (NH₄)₂HPO₄. В качестве восстанавливающего и покрывающего агента использовали сажу (5 %). Смесь исходных реагентов подвергали механической активации (MA) в высокоэнергетической планетарной мельнице АГО-2 (900 об./мин.). Отжиг мехактивированной смеси осуществляли в токе Ar при 750 °C.

Рентгенофазовый анализ (РФА) проводили с помощью дифрактометра D8 Advance Bruker, излучение СиКа. Для структурных уточнений данных РФА использовали пакет программного обеспечения GSAS. Размер и морфологию частиц определяли с помощью просвечивающей электронной микроскопии (ПЭМ) с использованием просвечивающего электронного ми-

Результаты и обсуждение

На рис. 1 представлены дифрактограммы синтезированных образцов LFVP и LFTP, уточненные по методу Ритвельда. Видно, что они хорошо описываются двухфазной моделью: LFP с орторомбической структурой оливина (пространственная группа Pnmb) и LVP с моноклинной (пространственная группа P2,/n) или LTP с ромбоэдрической структурой (пространственная группа R-3c). Наблюдаемые и расчетные дифрактограммы хорошо коррелируют между собой; фактор достоверности (R,) имеет приемлемые значения. Структура оливина LFP состоит из соединенных вершинами октаэдров FeO₆, расположенных

кроскопа JEM-2200 FS. Микроанализ проводили с помощью энергодисперсионного рентгеновского спектрометра EX-230 BU. Для электрохимического тестирования были приготовлены композиционные катодные материалы, состоящие из 75 вес. % активной составляющей, 20 вес. % проводящего углерода Super Р и 5 вес.% связующего PVDF/NMP. Полученная суспензия затем наносилась на алюминиевую фольгу для получения рабочих электродов. Плотность приготовленных образцов составляла 2-3 мг × см⁻², а диаметр электрода 10 мм. Рабочий электрод высушивали при 120 °С. Электрохимические ячейки собирали в аргоновом боксе, используя литий в качестве анода, 1M LiPF₆ в смеси этилен- и диметилкарбоната (1:1) в качестве электролита и стекловолоконный фильтр Whatman, Grade GF/C в качестве сепаратора.

вдоль оси b, которые связаны друг с другом посредством тетраэдров РО,. Моноклинная структура LVP содержит октаэдры металлов и тетраэдры фосфата, имеющие общие атомы кислорода в вершинах. Ионы лития расположены в полостях структуры [17]. Наличие цепочек полиэдров лития, соединенных вершинами вдоль оси b и открытых диффузионных каналов в других направлениях, обеспечивает быстрый, изотропный ионный транспорт, подобный суперионной проводимости в соединениях со структурой NASICON. Ромбоэрическая структура LTP представляет из себя трехмерную сеть из октаэдров ТіО,, соединенных

всеми своими вершинами с тетраэдрами PO_4 , и наоборот, формируя так называемые «фонарики», ориентированные в том же направлении (вдоль оси *c*) [18]. Каналы проводимости формируются вдоль оси *c*. Результаты структурного анализа композитов, по-

лученные после уточнения дифрактограмм методом Ритвельда, представлены в табл. 1. Параметры решетки LFP в композите LFVP несколько меньше, чем у чистого LFP. Небольшие изменения параметров могут быть вызваны незначительным внедрением ионов V с меньшим ионным радиусом (R_{V3+} = 0,64 Å, R_{V4+} = 0,53 Å) в структуру LFP. Рассчитанное соотношение фаз LFP/LVP около 96,3/3,7 мол. %. В композите LFTP изменения параметров решетки LFP меньше, чем в композите LFVP. Рассчитанное соотношение LFP/ LTP - 95,8/4,2 мол. %, что свидетельствует о меньшей степени замещения Ti^{4+}/Fe^{2+} .

Вопрос о механизме внедрения супервалентных ионов в структуру LFP является дискуссионным. В соответствии с [5], этот процесс неблагоприятен для всех ортофосфатов LiMPO₄. Это указывает на то, что супервалентные ионы нестабильны в кристаллической решетке LiMPO₄ и вряд ли могут встраиваться в концентрациях, превышающих 3 %. Установлено, что механизмом компенсации для супер-

Таблица 1

Параметры решетки	LFP	LFVP		LFTP	
		LFP	LVP	LFP	LTP
a, Å	10,3052(1)	10,2935(3)	8,583(6)	10,3053(3)	8,491(2)
<i>b</i> , Å	5,9946(1)	5,9886(1)	8,574(6)	5,9947(2)	8,491(2)
<i>c</i> , Å	4,6833(1)	4,6843(1)	12,018(8)	4,6828(1)	20,855(9)
			90,56(6)		
V, Å ³	289,32(1)	288,76	884,4(7)	289,29(2)	1302,1(4)
R _{wp} , %	6,60	8,52		9,29	
χ^2	1,290	2,205		2,214	
LFP/LMP (мол. %)		96,3/3,7		95,8/4,2	

Результаты структурного анализа с уточнением по методу Ритвельда

валентных допантов является формирование вакансий М²⁺, в то время как изменение зарядового состояния ионов переходного металла более энергозатратно.

По литературным данным, электронное состояние ионов Fe в LFP не меняется при допировании V и Ti. Авторы работ [13–15] установили, что степень окисления допированных ионов Ti 4+, в то время как ионов V – между 3+ и 4+ [9–11]. Замещение ионов Fe²⁺ ионами M³⁺ и M⁴⁺ в структуре LFP одновременно с образованием вакансий Li и «антиструктурных» парных дефектов может быть представлено следующими уравнениями в системе Крёгера – Винка:

 $\begin{array}{c} \text{Li}_{\text{Li}}^{x} \rightarrow \text{V}_{\text{Li}}^{'} + \text{Li}_{i}^{'} \\ \text{Fe}_{\text{Fe}}^{x} + \text{Li}_{\text{Li}}^{x \circ} \text{Li}_{\text{Fe}}^{'} + \text{Fe}_{\text{Li}}^{'} \\ 1/2M_{2}O_{3}^{'} + 3/2\text{Fe}_{\text{Fe}}^{x} \rightarrow M_{\text{Fe}}^{'} + 1/2\text{V}_{\text{Fe}}^{''} + \\ + 3/2\text{FeO} \end{array}$

 $MO_2 + 2Fe_{Fe}^x \rightarrow M_{Fe}^{"} + V_{Fe}^{"} + 2FeO.$

Предполагается, что ионы железа могут мигрировать из положений Fe_{Li}^{-1} в вакансии V_{Fe}^{-1} . Таким образом, основными дефектами в LFP, допированном ионами V и Ti, должны быть вакансии Li и ионы M^{n+} в позициях Fe [5].

Согласно ПЭМ, образцы LFVP и LFTP состоят из наноразмерных частиц неправильной формы со средним размером около 100-300 нм, аналогично чистому LFP (рис. 2). Поверхность частиц покрыта тонким слоем углерода. Энергодисперсионный рентгеновский микроанализ подтверждает заданную концентрацию элементов в синтезированных композитах (рис. 2, а). На рис. 2, в-г приведены индивидуальные карты распределения элементов Fe и V для образца LFVP при наложении с исходным изображением (рис. 2,

б). Очевидно, что LVP образует более мелкие частицы, предпочтительно на поверхности более крупных частиц LFP, таким образом, вероятно, увеличивая поверхность для диффузии ионов Li в композите.

Электрохимическое поведение LFVP и LFTP изучали в диапазоне напряжений 2,5–4,3 В при скорости циклирования C/10. Зарядно-разрядные профили и соответствующие зависимости dQ/dV от напряжения показаны на рис. 3. Профили, а также количество и положение окислитель-

Рис. 2. EDX (*a*), TEM (*б*) и карты распределения элементов (*в*−*д*) LiFePO4, допированного ванадием

но-восстановительных пиков согласуются с литературными данными для чистых фаз. Плато около 3,4 В относится к окислительно-восстановительной паре Fe²⁺/Fe³⁺, соответствующей (де)интеркаляции Li из/в LFP по двухфазному механизму. Образец, допированный V, характеризуется появлением нескольких дополнительных отчетливых плато при более высоком напряжении, которые относятся к рабочим парам V^{3+}/V^{4+} и V^{4+}/V^{5+} в LVP. Согласно [17], для LVP характерны три окислительных плато около 3,62; 3,70; 4,09 В при заряде до 4,3 В, соответствующие последовательным двухфазным переходам Li₃V₂(PO₄)₃ [•] Li₂₅V₂(PO₄)₃ [•] Li₂V₂(PO₄)₃ [®] Li₁V₂(PO₄)₃. Очень близкое расположение окислительных и восстановительных пиков для чистого LVP при циклировании в диапазоне напряжений 2,5-4,3 В указывает на низкую степень поляризации и

облегченный электронный и ионный транспорт. LFP, допированный титаном, также имеет дополнительное плато, но при более низком напряжении. Это плато соответствует рабочей паре Ті⁴⁺/Ті³⁺ в LTP. Ранее было обнаружено, что LTP может внедрять два дополнительных иона Li при напряжении ~2,5 В, соответствующем восстановлению двух ионов Ті⁴⁺ до Ті³⁺ [19]. Внедрение Li в LTP реализуется по двухфазному механизму. Следует подчеркнуть, что LTP служит матрицей для размещения ионов Li, которые не могут быть внедрены обратно в структуру LFP. Отметим, что положение окислительно-восстановительных пиков на dQ/dV зависимостях соответствует пикам для чистых LFP, LVP и LTP, свидетельствуя, что низкая степень замещения и образование композитов не оказывают заметного влияния на напряжение окислительно-восстанови-

Рис. 3. Зарядно-разрядные профили (*a*) и зависимости dQ/dV от напряжения (*б*) для чистого, V- и Ti-допированного LiFePO4

тельных процессов при циклировании. С другой стороны, в случае твердых растворов со структурой оливина, например, LiFe_{1-y}Mn_yPO₄ и LiFe_{1-y}Co_yPO₄, окислительно-восстановительные потенциалы Fe²⁺/Fe³⁺ и Mn²⁺/Mn³⁺ (Co²⁺/ Co³⁺) постепенно понижаются/повышаются в зависимости от содержания допанта [20, 21].

На рис. 4, *а*, *б* представлены разрядные профили допированных образцов приразличных скоростях, анарис. 4, *в*, *г*– зависимость удельной разрядной емкости от номера цикла при скорости С/10 и от скорости циклирования, соответственно. Начальная разрядная емкость составляет 152 мАч \times г⁻¹ для LFVP и 135 мАч \times г⁻¹ для LFTP, однако постепенно уменьшается на последующих циклах. LFVP лучше циклирует при повышенных скоростях, чем LFTP. На наш взгляд, улучшение электрохимических характеристик LFVP является следствием присутствия фазы LVP с высокой подвижностью ионов лития и приемлемого количества точечных дефектов в структуре LFVP.

Заключение

Образцы LiFePO₄, допированные ванадием и титаном, были синтезированы с помощью простого механохимически стимулированного карботермического восстановления с использованием Fe_2O_3 , V_2O_5 и TiO_2 в качестве исходных реагентов и сажи для восстановления и создания углеродного покрытия. Было установлено, что синтезированные материалы

Рис. 4. Разрядные профили (*a*, *б*), зависимость разрядной емкости от номера цикла (*в*) и скорости циклирования (*г*) для V- и Ті-допированного LiFePO₄

состоят из двух тонко перемешанных фаз: LiFePO₄ с малой степенью замещения Fe/V(Ti) и примесной фазы – $Li_3V_2(PO_4)_3$ или LiTi_2(PO_4)_3. Маленькие частицы вторичных фаз сегрегированы на поверхности более крупных частиц LiFePO₄. LiFePO₄, допированный ванадием, обладает лучшей стабильностью при циклировании и циклируемостью при повышенных скоростях, чем образец, допированных титаном. Это в большей степени связано с более высокой диффузией лития, вызванной присутствием ${\rm Li}_3{\rm V}_2({\rm PO}_4)_3$ с высокой мобильностью ионов Li и приемлемым количеством дефектов вследствие частичного замещения V на Fe. Увеличение числа плато и среднего напряжения интеркаляции благодаря присутствию ${\rm Li}_3{\rm V}_2({\rm PO}_4)_3$ должно иметь преимущества в улучшении циклирования ячеек с LiFePO₄.

- 1. Yamada A., Chung S. C., Hinokuma K. Optimized LiFePO₄ for lithium battery cathodes. *J. Electrochem. Soc.* 2001;148(3):A224-A229.
- 2. Ravet N., Chouinard Y., Magnan J. F., Besner S., Gauthier M., Armand M. Electroactivity of natural and synthetic triphylite. *J. Power Sources*. 2001;97-98:503–507. doi: 10.1016/S0378-7753(01)00727-3.
- 3. Chung S. Y., Chiang Y. M. Microscale Measurements of the Electrical Conductivity of Doped LiFePO₄. *Electrochem. Solid-State Lett.* 2003;6(12):A278-A281. doi: 10.1149/1.1621289.
- Prosini P. P., Lisi M., Zane D., Pasquali M. Determination of the chemical diffusion coefficient of lithium in LiFePO₄. *Solid State Ionics*. 2002;148(1–2):45–51. doi: 10.1016/S0167-2738(02)00134-0.
- Fisher C. A. J., Prieto V. M. H., Islam M. S. Lithium battery materials LiMPO₄ (M = Mn, transport Fe, Co, and Ni): Insights into defect association, mechanisms, and doping behavior. *Chem. Mater.* 2008;20(18):5907–5915. doi: 10.1021/cm801262x.
- 6. Wang L., Li Z., Xu H., Zhang K. J. Phys. Chem. C. 2008;112:308.
- Omenya F., Chernova N. A., Upreti S., Zavalij P. Y., Nam K. W., Yang X. Q., Whittigham M. S. Can vanadium be substituted into LiFePO₄? *Chem. Mater.* 2011;23(21):4733–4740. doi: 10.1021/cm2017032.
- 8. Xiang J. Y., Tu J. P., Zhang L., Wang X. L., Zhou Y., Qiao Y. Q., Lu Y. Improved electrochemical performances of 9LiFePO₄·Li ₃V₂(PO₄)/C composite prepared by a simple solid-state method. *J. Power Sources.* 2010;195(24):8331–8335. doi: 10.1016/j. jpowsour.2010.06.070.
- 9. Ma J., Li B., Du H., Xu C., Kang F. J. Electrochem. Soc. 2011;158:A26.
- 10. Zhang L. L., Liang G., Ignatov A., Croft M. C., Xiong X. Q., Hung I. M., Huang Y. H., Hu X. L., Zhang W. X., Peng Y. L. Effect of vanadium incorporation on electrochemical performance of LiFePO₄ for lithium-ion batteries. *J. Phys. Chem. C.* 2011;115(27):13520–13527. doi: 10.1021/jp2034906.
- 11. Chiang C. Y., Su H. C., Liu P. J., Hu C. W., Sharma N., Peterson V. K., Hsieh H. W., Lin Y. F., Chou W. C., Lee C. H., Lee J. F., Shew B. Y. Vanadium substitution of LiFePO₄ cathode materials to enhance the capacity of LiFePO₄-based lithium-ion batteries. *J. Phys. Chem. C.* 2012;116(46):24424-24429. doi: 10.1021/jp307047w.

- Zhong S., Wu L., Liu J. Sol-gel synthesis and electrochemical properties of 9LiFePO 4 Li₃V₂(PO₄)₃ / C composite cathode material for lithium ion batteries.*Electrochim. Acta.* 2012;74(15):8–15. doi: 10.1016/j.electacta.2012.03.181.
- Wang G. X., Bewlay S., Needham S. A., Liu H. K., Liu R. S., Drozd V. A., Lee J. F., Chen J. M. Synthesis and characterization of LiFePO₄ and LiTi _{0.01}Fe_{0.99}PO₄ cathode materials. *J. Electrochem. Soc.* 2006;153(1):A25-A31. doi: 10.1149/1.2128766.
- 14. Wang Z. H., Pang Q. Q., Deng K. J., Yuan L. X., Huang F., Peng Y. L., Huang Y. H. *Electrochim. Acta.* 2012;78:576.
- [15] Fang H., Liang G., Zhao L., Wallace T., Arava H., Zhang L. L., Ignatov A., Croft M. C. J. Electrochem. Soc. 2013;160:A3148.
- 16. Koenig G. M., Jr., Ma J., Key B., Fink J., Low K. B., Shahbazian-Yassar R., Belharouak I. Composite of LiFePO₄ with titanium phosphate phases as lithium-ion battery electrode material. *J. Phys. Chem C.* 2013;117:21132. doi:10.1021/p4074174.
- Huang H., Yin S. C., Kerr T., Taylor N., Nazar L. F. Nanostructured composites: A high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. *Adv. Mater.* 2002;14(21):1525–1528. doi: 10.1002/1521-4095(20021104)14;21<1525::AID-ADMA1525>3.0.co;2-3.
- Belous A. G., Novitzkaya G. N., Polyanetzkaya S. V., Gornikov Yu. I. Study of Complex Oxides of Composition La//2////3// minus //xLi//3//xTiO//3. *Russ. Izvestiya* AN SSSR, Neorgan. Materialy. 1987;23(3):470–472.
- 19. Patoux S., Masquelier C. Lithium insertion into titanium phosphates, silicates, and sulfates. *Chem. Mater.* 2002;14(12):5057–5068. doi: 10.1021/cm0201798.
- 20. Kosova N. V., Devyatkina E. T., Slobodyuk A. B., Petrov S. A. Submicron LiFe _{1-y}Mn _yPO₄ solid solutions prepared by mechanochemically assisted carbothermal reduction: The structure and properties. *Electrochim. Acta.* 2012;59(1):404–411. doi : 10.1016/j. electacta.2011.10.082.
- Kosova N. V., Podgornova O. A., Devyatkina E. T., Podugolnikov V. R., Petrov S. A. Effect of Fe²⁺ substitution on the structure and electrochemistry of LiCoPO₄ prepared by mechanochemically assisted carbothermal reduction. *J. Mater. Chem. A.* 2014;2(48):20697–20705. doi: 10.1039/c4ta04221b.