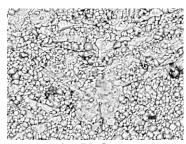
ИССЛЕДОВАНИЕ ЭЛЕКТРОПРОВОДЯЩИХ СВОЙСТВ МАТЕРИАЛОВ НА ОСНОВЕ ОКСИДА ЦИНКА, ДОПИРОВАННЫХ ВАНАДИЕМ

Стрижевская Н.О.

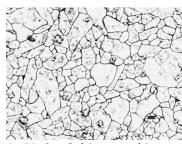
Руководитель – доц., канд. тех. наук Аникина В.И., Институт Цветных Металлов и Материаловедения Сибирского Федерального Университета, г.Красноярск

VIAnikina@mail.ru

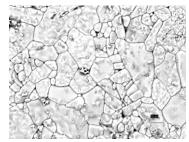
В данной работе исследованы электропроводящие свойства керамических материалов на основе оксида цинка, допированных ванадием.


В последние десятилетия во всем мире в электроконтактных элементах низковольтной аппаратуры используется многофункциональный полупроводниковый материал на основе оксида цинка.

Исследование проводили на полученных образцах, составы которых представлены в таблице 1.


Таблица 1 – Составы керамических материалов на основе (100-х)ZnO-хV₂O₅O,1 Cu₂O

Состав	Содержание, мол. %		
	ZnO	Cu ₂ O	V_2O_5
1	99,99	0,1	-
2	99,89	0,1	0,01
3	99,85	0,1	0,05


На рисунке 1 приведены микрофотографии образцов полученной керамики различных составов.

a - 6ез V_2O_5 сред. размер зерен 6 мкм

 σ - V_2O_5 0,01 мол. % сред. размер зерен 18 мкм а, σ , в - $\times 2000$

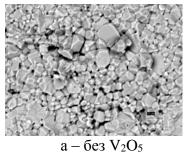
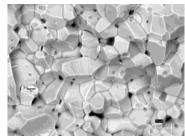
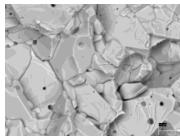

в – V2O5 0,05 мол. % сред. размер зерен 24 мкм

Рисунок 1– Микроструктура керамики


Из рисунка 1 следует, что структура керамики без добавки V_2O_5 высокодисперсна, средний размер зерен составляет 6 мкм. С добавлением V_2O_5 структура приобретает однородный характер, зерна становятся правильной формы, средний размер их растет и достигает 24 мкм в образце с содержанием V_2O_5 0,05 мол. %, что впоследствии должно положительно

сказаться на результатах электропроводимости, т.к. суммарное количество границ зерен уменьшается, снижая концентрации дефектов на пути прохождения тока, тем самым уменьшая сопротивление образцов.


На рисунке 2 представлены микрофотографии изломов керамики разного состава. Изломы были получены приложением ударной нагрузки. Фрактограммы имеют хрупкий фарфоровидный тип, типичный для керамических материалов.

а – без V₂O₅ объем.доля пор 8,2 %

б - V₂O₅ 0,01 мол. % объем. доля пор 6,1 % а, б, в - ×2500

в – V2O5 0,05 мол. % объем. доля пор 4,6 %

Рисунок 2 -Фрактограммы исследованных образцов

Из рисунка 2 следует, что разрушение шло по границам зерен. С увеличением содержания V_2O_5 наблюдали рост размера зерна. Сами зерна приобрели правильную форму в виде шестигранников. При этом объемная доля пор (черные изображения по телу зерен) уменьшается, следовательно, можно сделать вывод, что введение V_2O_5 обеспечивает более лучшее спекание керамики, что в свою очередь приводит к повышению электрических свойств материала.

Заключительным этапом проведения исследований было измерение удельной электрической проводимости в диапазоне температур 50-500°C.

Температурные зависимости электрической проводимости всех образцов керамики от содержания V_2O_5 при нагреве представлены на рисунке 3.

Изменение удельной электрической проводимости можно разделить на две области: низкотемпературную и высокотемпературную. В диапазоне температур 50-300°С удельная электропроводность для образца без V_2O_5 изменяется от $0.95\cdot10^{-5}$ до $0.44\cdot10^{-2}$ См/см; для образца с содержанием V_2O_5 0,01 мол. % –от $3.93\cdot10^{-5}$ до $1.26\cdot10^{-2}$ См/см; для образца с содержанием V_2O_5 0,05 мол. % –от $6.31\cdot10^{-5}$ до $1.71\cdot10^{-2}$ См/см. В диапазоне температур 300-500°С удельная электрическая проводимость повышается для образца без V_2O_5 от $0.44\cdot10^{-2}$ См/см до $46.52\cdot10^{-2}$ См/см; для образца с содержанием V_2O_5 0,01 мол. % – от $1.26\cdot10^{-2}$ до

 $52,51\cdot10^{-2}$ См/см; для образца с содержанием V_2O_5 0,05 мол. % –от $1,71\cdot10^{-2}$ до $66,29\cdot10^{-2}$ См/см.

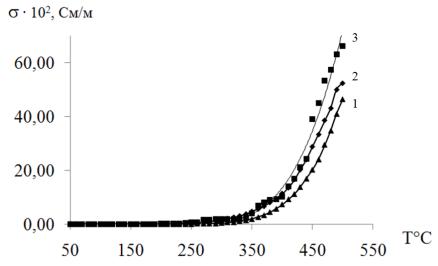


Рисунок 3 — Изменение удельной электропроводности при изменении температуры для образцов керамики с различным содержанием V_2O_5 , мол. %

Исследование микроструктуры образцов керамики показало, что при повышении содержания V_2O_5 средний размер зёрен увеличивается от 6 до 24 мкм. Установлено, что при увеличении содержания V_2O_5 в керамических образцах удельная электрическая проводимость повышается. Наибольшее значение среди исследованных составов она достигает при содержании V_2O_5 0,05 мол. %. В интервале температур $50 \div 300$ °C электропроводность данного образца изменяется от $6,31 \cdot 10^{-5}$ до $1,71 \cdot 10^{-2}$ См/см, в диапазоне температур 300-500°C – от $1,71 \cdot 10^{-2}$ до $66,29 \cdot 10^{-2}$ См/см.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ:

- 1.Kasap S. The springer handbook of electronic and photonic materials/S.Kasap, P. Capper. Berlin: Springer, 2007. C. 1406.
- 2. Всесторонний обзор материалов и устройств на основе ZnO / Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikovetal. 2007. C. 124-186.
- 3. Deposition and electrical properties of N-In co doped p-type ZnO films by ultrasonic spray pyrolysis / J. M. Bian, X. M. Li, X. D. Gao [et al.] // Appl. Phys. Lett, 2004. V.84, №4. C. 541-543.
 - 4. Young D.L. Structural characterization of zincstannate thin films /
- D.L. Young, Williamson, T.J. Coutts // J Appl. Phys. 2002. V.3, №1 C. 1464-1471.