
A method of determining the shear force of highly coercive permanent magnets (made of alloys of the rare-

earth elements samarium cobalt and neodymium ferroboron) in a magnetic system and the calculation of

the transferring torque of a magnetic coupling are considered.

Magnetic systems and magnetic couplings are intended for contactless transmission of translational and rotary motion

across a fixed partition through the interacting force of permanent magnets. Magnetic systems are used in hermetically sealed

conveyors and hoists, while magnetic couplings are used in pumps, gas blowers, compressors, and moving devices. The basic

characteristic of a magnetic system is the interacting force (shear), while that of a magnetic coupling, the transferring torque.

The interacting force of magnets may be calculated with the use of experimental coefficients [1] by integration of

equations for the magnetic vector potential [2] or by means of the method of direct integration of the Coulomb fields of mag-

netic charges [3].

Let us consider the interacting force of magnetic systems with a plane-parallel arrangement of the magnets. We will

consider the magnets to be uniformly magnetized, which enables us to represent a permanent magnet in the form of a set of

two poles filled with magnetic charges of opposing sign. For highly coercive permanent magnets, it is permissible to consid-

er the density of the magnetic charges to be constant over the area of the pole. In this case, the calculation of the interacting

force of the magnets reduces to a computation of surface integrals.

To reduce scattering of the magnetic fields, the magnets in the magnetic systems and couplings are arranged in mag-

netic circuits produced from magnetically soft materials, for example, steel 20. The effect of external magnetically soft mag-

netic circuits may be calculated on the basis of reflection theory by doubling the thickness of the magnets [4].

The interacting force is the sum of the attractive and repulsive forces of a pair of magnets. These forces are calcu-

lated by means of the equation

(1)

where ƒx is the attractive force along the X-axis acting on the lower magnet, N; Bx, magnetic induction along the X-axis cre-

ated by the lower magnet, T; J, magnetization of upper magnet (in magnetic systems and couplings, the magnetization of the

upper and lower magnets is the same), A/m; A, B, width and length of pole of the upper magnet, m; and x and y, displace-

ment (or coordinate) of center of lower pole of upper magnet, m.
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The magnetic induction [5]

(2)

where μ0 = 4π·10–7 H/m is the magnetic constant; a and b, width and length of lower magnet, m; and z, vertical coordinate

of center of lower pole of upper magnet, m.

Substituting the latter expression into (1) and performing the indicated integration, we obtain an expression for the

interacting force for magnets in the form of rectangular prisms based on magnetic circuits:

(3)

where a, b, and h are the dimensions of the lower magnet; si, ti, and ui are variables (Table 1), with qi = (si
2 + ti

2 + ui
2)1/2.
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i si ti ui

1 2x + a + A 2y + b + B 2z

2 2x – a – A 2y + b + B 2z

3 2x – a + A 2y + b – B 2z

4 2x + a – A 2y + b – B 2z

5 2x – a + A 2y – b + B 2z

6 2x + a – A 2y – b + B 2z

7 2x + a + A 2y – b – B 2z

8 2x – a – A 2y – b – B 2z

9 –2x – a + A –2y + b + B –2z

10 –2x + a – A –2y + b + B –2z

11 –2x + a + A –2y + b – B –2z

12 –2x – a – A –2y + b – B –2z

13 –2x + a + A –2y – b + B –2z

14 –2x – a – A –2y – b + B –2z

15 –2x – a + A –2y – b – B –2z

16 –2x + a – A –2y – b – B –2z
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If the lower and upper magnets do not have identical magnetization, expression (3) assumes the form

(4)

where j is the magnetization of the lower magnet, A/m.

The interacting force of the magnets is composed of the four interacting forces of the poles (Fig. 1):

Fx = ƒx(x, z) – ƒx(x, z + 2H) + ƒx(x, z + 2H + 2h) – ƒx(x, z + 2h), (5)

where Fx is the interacting force of a pair of magnets, N; ƒx(x, z) and ƒx(x, z + 2h + 2H), attractive forces, N; ƒx(x, z + 2h)

and ƒx(x, z + 2H), repulsive forces, N; and H and h, thickness of the upper and lower magnets, respectively, m.

Generally, an upper and lower magnet of the same dimensions are used in magnetic systems and magnetic couplings,

i.e., A = a, B = b, and H = h; in this case, expression (5) assumes the form

Fx = ƒx(x, z) + ƒx(x, z + 4H) – 2ƒx(x, z + 2H). (6)

The specific shear force in a magnetic system is calculated by means of the formula (N/cm2)

Fsp = Fx /S, (7)

where S is the area of the magnet, cm2.

The magnetization of the magnets is calculated from the formula (J = Jr)

Jr = Br /µ0, (8)

where Br = 0.77 T is the residual induction of a magnet and Jr the residual magnetization of a magnet, A/m.
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Fig. 1. Scheme for determining the forces acting on the lower magnet with displacement

of the upper magnet: 1) magnet; 2) magnetic circuit.



A comparison between the computational and experimental values of the specific shear forces in a magnetic system

with KS-37 rare-earth magnets (samarium–cobalt) with dimensions of A = a = 0.02 m, B = b = 0.05 m, and H = h = 0.01 m

(Fig. 2) demonstrates that the specific shear force decreases with increasing gap in the magnetic system (an analogous pat-

tern is observed for KS-37 rare-earth magnets with dimensions of A = a = 0.018 m, B = b = 0.04 m, and H = h = 0.008 m).

The deviation of the computational and experimental values does not exceed 10%. The experimental points are found slight-

ly below the computed points. This is explained by the fact that the magnetization of a magnet is calculated from the residu-

al induction of the magnet, as indicated in the certificate, though in actuality the magnets delivered by the manufacturing fac-

tory possess a residual induction in the range 0.77–0.80 T.

The main criterion for use in deciding on the serviceability of a magnetic coupling is the magnitude of the torque

transferred to the actuating mechanism. The torque itself depends on the design of the coupling (dimensions and number of

magnets, their relative position, and relationships between their geometric dimensions and the air gap).

A magnetic coupling consists of both an outer (master) 1 and an inner (slave) 2 half-coupling (Fig. 3). The magni-

tude of the torque is defined as the product of the radius of the circumference of the slave half-coupling and the sum of the

projections of the attractive and repulsive forces of all the poles of the magnets onto an axis perpendicular to the radii of the

half-couplings.

Let N be an even number of magnets in a half-coupling. We will assume that the magnetization of the magnets is

uniform and directed perpendicular to the surface of the poles. Calculation of the torque of a magnetic coupling reduces to
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Fig. 2. Specific shear force in a magnetic system as a function of gap:

a) calculation; ×) experiment.

Fig. 3. Cylindrical magnetic coupling.



determining the tangential attractive force of a pair of rectangular prisms situated at an angle ϕ (error angle) relative to each

other (Fig. 4a). Let us consider the interaction of magnets with rectangular poles (dimensions a × b and A × B, surface den-

sity of magnetic charges μ0J). We place the coordinate origin at the center of the upper pole of the lower magnet. The coor-

dinates of the center of the lower pole of the upper magnet are x, y, z (Fig. 4b). With rotation of the outer half-coupling rel-

ative to the inner half-coupling by an angle ϕ we introduce new coordinate axes X ′, Y ′, Z ′ rotated relative to the axes X, Y, Z

by the angle ϕ (the coordinate origin and two axes Y and Y ′ coincide), whence the relationship between the coordinates is

determined by the equations

(9)

The attractive force along the X-axis acting on the lower pole of the lower magnet, N, is as follows:

(10)

where r s the outer radius of the inner half-coupling, m and x = rsinϕ.

Substituting (2) into (10), integrating Bx with respect to y, performing a turn of the coordinate axes by an angle ϕ,

and integrating with respect to x on the basis of Eqs. (9), we obtain an expression for determining the attractive force of two

magnets rotated by an angle ϕ relative to each other:

(11)

where sj, tj, and uj are variables (Table 2) and qj = (sj
2 + tj

2 + uj
2)1/2.
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Fig. 4. Relative position of magnets: a) in space; b) in the X0Z plane.



N, units 2r, mm 2R, mm
a × b × h,

A × B × H, mm
Brand of material

of magnet*
J, kA/m

M, N·m

calculation experiment

14 158 173 30 × 60 × 8 KS–37 577 106 102

18 133 143 20 × 50 × 8 KS–37 570 84 83

18 133 143 20 × 60 × 8 KS–37 569 102 104

18 133 143 20 × 80 × 8 KS–37 568 139 147

8 78 88 25 × 50 × 10 Ch36R 739 57 52

18 133 143 20 × 30 × 8 NZhB 689 67 59

* KS-37 – samarium-cobalt alloy; Ch36R and NZhB – neodynmium-ferroboron alloys.

The torque of the pair of prisms being considered here creates four interacting forces between the poles (in Eq. (5)

the corresponding distances are substituted in place of x and z). The torque transferred by the pair of magnets, N·m, is as

follows:

m(x, z) = [ƒx1(x, z) – ƒx1(x + 2Hsinϕ, z + 2Hcosϕ)]r –

– [ƒx1(x, z + 2h) – ƒx1(x + 2Hsinϕ, z + 2h + 2Hcosϕ)](r – 2h). (12)

j sj tj uj

1 (2x + a)cosϕ + A – 2zsinϕ 2y + b + B (2x + a)sinϕ + 2zcosϕ

2 (2x – a)cosϕ – A – 2zsinϕ 2y + b + B (2x – a)sinϕ + 2zcosϕ

3 (2x – a)cosϕ + A – 2zsinϕ 2y + b – B (2x – a)sinϕ + 2zcosϕ

4 (2x + a)cosϕ – A – 2zsinϕ 2y + b – B (2x + a)sinϕ + 2zcosϕ

5 (2x – a)cosϕ + A – 2zsinϕ 2y – b + B (2x – a)sinϕ + 2zcosϕ

6 (2x + a)cosϕ – A – 2zsinϕ 2y – b + B (2x + a)sinϕ + 2zcosϕ

7 (2x + a)cosϕ + A – 2zsinϕ 2y – b – B (2x + a)sinϕ + 2zcosϕ

8 (2x – a)cosϕ – A – 2zsinϕ 2y – b – B (2x – a)sinϕ + 2zcosϕ

9 – (2x + a)cosϕ + A + 2zsinϕ –2y + b + B – (2x + a)sinϕ – 2zcosϕ

10 – (2x – a)cosϕ – A + 2zsinϕ –2y + b + B – (2x – a)sinϕ – 2zcosϕ

11 – (2x – a)cosϕ + A + 2zsinϕ –2y + b – B – (2x – a)sinϕ – 2zcosϕ

12 – (2x + a)cosϕ – A + 2zsinϕ –2y + b – B – (2x + a)sinϕ – 2zcosϕ

13 – (2x – a)cosϕ + A + 2zsinϕ –2y – b + B – (2x – a)sinϕ – 2zcosϕ

14 – (2x + a)cosϕ – A + 2zsinϕ –2y – b + B – (2x + a)sinϕ – 2zcosϕ

15 – (2x + a)cosϕ + A + 2zsinϕ –2y – b – B – (2x + a)sinϕ – 2zcosϕ

16 – (2x – a)cosϕ – A + 2zsinϕ –2y – b – B – (2x – a)sinϕ – 2zcosϕ
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The torque of the magnetic coupling M, N·m, based on alternation of the polarity of the magnets, may be represented

as the sum of the torques of the pairs of magnets:

(13)

where k is the ordinal number of the magnet in the half-coupling.

The divergence between the computational and experimental values of the torques for several magnetic couplings

with rare-earth magnets does not exceed 12% (Table 3).

The magnetization of the magnets is calculated from the normal demagnetization curves. Since the residual induc-

tance Br is basically specified in the certificates for the magnets from the manufacturing factories, it is recommended that the

magnetization of the magnets J = Jr should be adopted for engineering calculations.

In magnetic couplings with rare-earth magnets, magnets of the same dimensions are used in view of their high cost,

i.e., A = a, B = b, and H = h. In this case, the expression for calculating the attractive force of a pair of magnets (11) assumes

the form [6]:

(14)

where sƒ, tƒ, and uƒ are variables (Table 4) and qf = (sf
2 + tf

2 + uf
2)1/2.
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j sf tf uf

1 (2x + a)cosϕ + a – 2zsinϕ 2y + 2b (2x + a)sinϕ + 2zcosϕ

2 (2x – a)cosϕ – a – 2zsinϕ 2y + 2b (2x – a)sinϕ + 2zcosϕ

3 (2x + a)cosϕ – a – 2zsinϕ 2y (2x + a)sinϕ + 2zcosϕ

4 (2x – a)cosϕ + a – 2zsinϕ 2y (2x – a)sinϕ + 2zcosϕ

5 –(2x + a)cosϕ + a + 2zsinϕ –2y + 2b –(2x + a)sinϕ – 2zcosϕ

6 –(2x – a)cosϕ – a + 2zsinϕ –2y + 2b –(2x – a)sinϕ – 2zcosϕ

7 –(2x + a)cosϕ – a + 2zsinϕ –2y –(2x + a)sinϕ – 2zcosϕ

8 –(2x – a)cosϕ + a + 2zsinϕ –2y –(2x – a)sinϕ – 2zcosϕ
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TABLE 4

Gap δ, mm 3 4 5 5 8 10 12 14 16 20

Optimal ratio 2δ/a 0.25 0.26 0.30 0.32 0.40 0.40 0.56 0.63 0.68 0.80

TABLE 5



The torque transferred by the magnetic coupling depends on the error angle of the poles of the half-couplings. This

nonlinear relationship (Fig. 5) is usually approximated by a sine curve:

M = Mmaxsin(α1 – α2), (15)

where Mmax is the maximum static moment of a magnetic coupling, N·m; α1, electrical turning angle of master half-coupling,

rad; and α2, electrical turning angle of slave half-coupling, rad.

Note that α1 – α2 = ϕN /2, while with α1 – α2 = 0.5π, we have M = Mmax, i.e., the maximum torque of the couplings

is achieved with a mismatch of the half-couplings by one-half the width of the magnet; with a further increase in the error

angle, the magnetic relation breaks down and the coupling does not transfer torque (Fig. 5).

A number of variants of magnetic couplings were calculated on the basis of formulas (11)–(13). With constant radii

of the outer and inner half-couplings, these formulas support the transfer of a specified torque. The dimensions of the mag-

nets were varied in the different variants, with the length and thickness of the magnets in the master and slave half-couplings

made equal. As a result of the calculations, it was established that for a given number of poles (magnets) there exists an opti-

mal ratio 2δ /a (where δ = R – r is the air gap between the magnets and R the inner radius of the master half-coupling), at

which the torque of the coupling is maximum.

Optimal values of the ratio 2δ /a as a function of the air gap for magnetic couplings with magnets made of barium

ferrite are presented in Table 5.

Concrete values of the optimal dimensions of the magnets depend on the specified dimensions of the magnetic cou-

pling and the magnetic properties of the material of the magnet.

In magnetic couplings with magnets made of rare-earth materials, it is generally difficult to use magnets with dimen-

sions that assure a maximally possible torque of a coupling of specified dimensions (with optimal value of the ratio 2δ /a),

since the manufacturing factories produce magnets of a specific range. In practical applications, it is not necessary to com-

pletely fit the magnets into the magnetic circuits, since the torque of a magnetic coupling with continuous arrangement of the

magnets exceeds the required value. In this case, it makes sense to use only some of the magnets. These magnets may be

arranged in the magnetic circuit either uniformly one by one or in groups of four magnets. Let us consider the interaction of

magnets shifted by an angle ϕ relative to each other (Fig. 6a) with uniform arrangement along a circle. Only two attractive

forces (F1 and F2) between the poles act between the four magnets. The projection of the equivalent force FQ1 onto the X-axis

is equal to the sum of the projections of two equal forces Fx1 and Fx2. The forces acting between the four grouped magnets,

which are mounted tightly next to each other in the inner half-coupling, are shown in Fig. 6b. The repulsive forces between
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Fig. 5. Torque as a function of error angle of half-couplings (N = 16, r = 80 mm,

R = 85 mm, h = H = 10 mm, b = B = 50 mm, y = 0): 1) a = 28 mm, A = 34 mm

(maximum dimension); 2) a = A = 20 mm.



the analogous poles F3 and F4 are added to the attractive forces F1 and F2, with the force F3 greater than the force F4, since

the distance between the analogous poles where this force acts is less than that between the other analogous poles. The force

F3 also participates in the creation of the torque of the magnetic coupling. The projection of the equivalent force on the X axis

is defined as the sum of the projections of all the effective forces:

FQ2 = Fx1 + Fx2 + Fx3 – Fx4. (16)

Obviously, the force FQ2 is greater than the force FQ1, consequently, the torque of a magnetic coupling with this

arrangement of the magnets is greater than in couplings with a uniform arrangement of the magnets along a circle [7].

In the present article, mathematical expressions for calculating the transferring torque of a cylindrical magnetic cou-

pling, disregarding polishing of the magnets along the radii R and r, were presented (cf. Fig. 4). The mathematical expres-

sions presented in [8] must be used to calculate the transferring torque of a cylindrical magnetic coupling that takes into

account polishing of the magnets along the radii R and r.

Conclusions
1. The magnitude of the torque is equal to the difference of the products of the sum of the attractive and repulsive

forces of the outer poles of the inner half-coupling times the radius of the circumference of the inner half-coupling on which

the outer poles are situated and the sum of the attractive and repulsive forces of the lower poles times the radius of the cir-

cumference of the inner half-coupling on which the outer poles are situated, less twice the thickness of the magnet.

2. For a given number of poles (magnets), there exists an optimal ratio equal to twice the air gap between opposing

magnets to the width of the pole (magnet) at which the torque of the coupling is maximal.
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